DETERMINACIÓN DEL IMPACTO DEL PROCESO URBANIZADOR SOBRE LA RESPUESTA HIDROLÓGICA DE LA SUBCUENCA DEL CANAL SALITRE MEDIANTE EL METODO DE CURVA NÚMERO.

RONALD EDUARDO CALA AMADO

JENNY CAROLINA GRILLO GONZALEZ

UNIVERSIDAD CATÓLICA DE COLOMBIA

FACULTAD DE INGENIERÍA

PROGRAMA DE ESPECIALIZACIÓN EN RECURSOS HÍDRICOS

BOGOTÁ D.C – 2017
DETERMINACIÓN DEL IMPACTO DEL PROCESO URBANIZADOR SOBRE LA RESPUESTA HIDROLÓGICA DE LA SUBCUENCA DEL CANAL SALITRE MEDIANTE EL METODO DE CURVA NÚMERO.

RONALD EDUARDO CALA AMADO

JENNY CAROLINA GRILLO GONZALEZ

Trabajo de grado para obtener el título de especialista en Recursos Hídricos.

ASESOR: CARLOS DANIEL MONTES

INGENIERO CIVIL, MSC.

UNIVERSIDAD CATÓLICA DE COLOMBIA
FACULTAD DE INGENIERÍA
PROGRAMA DE ESPECIALIZACIÓN EN RECURSOS HÍDRICOS
BOGOTÁ D.C – 2017
La presente obra está bajo una licencia:
Atribución-NoComercial 2.5 Colombia (CC BY-NC 2.5)
Para leer el texto completo de la licencia, visita:
http://creativecommons.org/licenses/by-nc/2.5/co/

Usted es libre de:

- Compartir - copiar, distribuir, ejecutar y comunicar públicamente la obra
- hacer obras derivadas

Bajo las condiciones siguientes:

- **Atribución** — Debe reconocer los créditos de la obra de la manera especificada por el autor o el licenciatario (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).

- **No Comercial** — No puede utilizar esta obra para fines comerciales.
Agradecimientos y dedicatoria.

Jenny Carolina Grillo:

Gracias a mi amiga y colega Cielo Díaz Mena quien, inspirada por su vinculación a la Fundación Humedales Bogotá, aportó parte de la idea original para este trabajo de grado, así como información y herramientas muy útiles.

A la Cooperativa Gestión y Estudio Ambientales GEA, por su apoyo en la elaboración de la cartografía.

A los profesores Carlos Valero y Carlos Montes, quieres en el desarrollo de sus clases, también nos fueron mostrando las metodologías que aplicamos aquí.

Gracias a mi familia y compañero de vida por su paciencia, por las horas que dejé de compartir con ellos, por dedicarme a los deberes académicos de esta especialización.

Ronald Cala Amado:

Este proyecto es el resultado del esfuerzo conjunto de todos los que formamos el grupo de trabajo. Por esto agradezco al profesor Carlos Montes y mi compañera Jenny Grillo.

A mi familia quienes a lo largo de toda mi vida han apoyado y motivado mi formación académica, creyeron en mí en todo momento y no dudaron de mis habilidades.
TABLA DE CONTENIDO

INTRODUCCIÓN ... 10

1 GENERALIDADES DEL TRABAJO DE GRADO .. 11

1.1 LÍNEA DE INVESTIGACIÓN .. 11

1.2 PLANTEAMIENTO DEL PROBLEMA.. 11

1.2.1 Problema a resolver .. 11

1.2.2 Antecedentes del problema .. 11

1.2.3 Pregunta de investigación .. 12

1.2.4 Justificación ... 12

1.2.5 Objetivo general .. 14

1.2.6 Objetivos específicos .. 14

2 MARCOS DE REFERENCIA .. 15

2.1 MARCO CONCEPTUAL ... 15

2.1.1 Escorrentía Superficial .. 15

2.1.2 Método de curva número (CN) .. 15

2.1.3 Introducción al EPA SWMM 5.0 .. 16

2.2 MARCO TEÓRICO ... 17

2.2.1 Humedales y su función ecosistémica en el control de inundaciones .. 17

2.2.2 Cuencas urbanas y problemática ambiental asociada a la urbanización ... 17

2.3 MARCO GEOGRÁFICO ... 17

3 METODOLOGÍA ... 19

4 ANÁLISIS DE RESULTADOS .. 20

4.1 RESTRICCIONES PARA LA ELABORACIÓN DEL TRABAJO DE GRADO .. 20

4.2 PRECIPITACIÓN EN LA SUBCUENCA DEL CANAL SALITRE .. 20

4.2.1 Selección de estaciones y periodo de datos analizado ... 20

4.2.2 Análisis de homogeneidad de las series datos ... 21

4.2.3 Análisis de consistencia de datos ... 21
4.3 TORRENTA DE DISEÑO .. 23
4.4 GENERACIÓN DE CARTOGRAFÍA PARA DETERMINACIÓN DE CN PONDERADO POR
ESCENARIOS .. 24
 4.4.1 Delimitación de la subcuenca .. 24
 4.4.2 Coberturas o uso del suelo ... 25
 4.4.3 Tipo de suelo ... 25
 4.4.4 Pendientes .. 26
 4.4.5 Mapa de Número de Curva ... 26
4.5 HIDROGRAMAS DE ESCORRÉNTÍA .. 27
5 CONCLUSIONES Y RECOMENDACIONES .. 32
BIBLIOGRAFÍA .. 34
LISTA DE FIGURAS

FIGURA 1-1. INFLUENCIA DE LA URBANIZACIÓN SOBRE LA RESPUESTA HIDROLÓGICA DE UNA CUENCA. 13
FIGURA 2-1. VARIABLES EN EL MÉTODO DE ABSTRACCIONES DE PRECIPITACIÓN DEL SCS; \(I_a = \) ABSTRACCIÓN INICIAL, \(P_e = \) EXCESO DE PRECIPITACIÓN; \(F_a = \) ABSTRACCIÓN CONTINUADA, \(P = \) PRECIPITACIÓN TOTAL. 16
FIGURA 4-1. ANÁLISIS DE HOMOGENEIDAD DE LAS SERIES DATOS. ... 21
FIGURA 4-2. ANÁLISIS DE CONSISTENCIA DE LAS SERIES DATOS. ... 22
FIGURA 4-3. HISTOGRAMA DE PRECIPITACIÓN PARA SUBCUENCA DEL CANAL SALITRE. .. 22
FIGURA 4-4. TORMENTA DE DISEÑO .. 24
FIGURA 4-5. HISTOGRAMA VARIADO PARA CADA PERIODO DE RETORNO ANALIZADO ... 28
FIGURA 4-6. REPRESENTACIÓN GRAFICA DE LOS OBJETOS FÍSICOS DEL SISTEMA EN EPA SWMM 5.1. 28
LISTA DE TABLAS

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Estaciones meteorológicas seleccionadas</td>
<td>20</td>
</tr>
<tr>
<td>4-2</td>
<td>Porcentaje de datos de las estaciones climatológicas</td>
<td>21</td>
</tr>
<tr>
<td>4-3</td>
<td>Clasificación de tipo de suelo para método curva número</td>
<td>25</td>
</tr>
<tr>
<td>4-4</td>
<td>Clasificación de cobertura vegetal para método curva número</td>
<td>27</td>
</tr>
<tr>
<td>4-5</td>
<td>Cálculo de volumen estimado de humedales Santa María del Lago, Córdoba y Juan</td>
<td>29</td>
</tr>
<tr>
<td>4-6</td>
<td>Comparativo de resultados de caudales y tiempos pico entre escenarios T=3 años</td>
<td>29</td>
</tr>
<tr>
<td>4-7</td>
<td>Comparativo de resultados de caudales y tiempos pico entre escenarios T=25 años</td>
<td>30</td>
</tr>
<tr>
<td>4-8</td>
<td>Comparativo de resultados de caudales y tiempos pico entre escenarios T=100 años</td>
<td>30</td>
</tr>
<tr>
<td>4-9</td>
<td>Resumen resultados por escenario y T.</td>
<td>30</td>
</tr>
</tbody>
</table>
RESUMEN

En este trabajo se presentan los resultados obtenidos de la modelación hidrológica a través de los hidrogramas de escorrentía a la salida de los humedales Juan amarillo, Córdoba y Santamaría del Lago, pertenecientes a la subcuenca del Canal Salitre en la ciudad de Bogotá, para periodos de retorno de 3, 25 y 100 años, en los que se analizaron 5 escenarios donde se variaba el número de curva de cada uno de estos en función del aumento del suelo urbanizado. Se empleó el software EPA SWMM 5.1 para realizar la modelación hidrológica a partir de parámetros asociados a la precipitación, parámetros morfológicos de la subcuenca, del uso y tipo del suelo obtenidos mediante software ArcGIS 10.

Palabras clave: Cuenca urbana, EPA SWMM, Precipitación, escorrentía, hietogramas, hidrogramas.
INTRODUCCIÓN

En Colombia los humedales adquieren la obligatoriedad de conservación y manejo a partir de su adherencia a la Convención de Ramsar con la Ley 357 de 1997. Posteriormente en 2001, ésta iniciativa se convierte en política a través de la publicación de la Política Nacional de Humedales Interiores de Colombia con el fin de garantizar la sostenibilidad del recurso hídrico a nivel nacional. En Bogotá, el proceso inicia con el Acuerdo 19 de 1994, a través del cual se declaran como reservas ambientales los humedales del Distrito Capital. El marco general para el manejo de los humedales fue incluido y establecido como parte de la estructura ecológica principal de la ciudad en el Plan de Ordenamiento Territorial reglamentado por el Decreto 619 de 2000, Decreto 469 de 2003 y Decreto 190 de 2004.

Este marco político y normativo, da cuenta de un esfuerzo administrativo de las autoridades territoriales sobre la necesidad de protección de los humedales, teniendo en cuenta que “los humedales siguen disminuyendo a escala mundial, tanto en extensión como en calidad, como resultado de ello, disminuyen los servicios de los ecosistemas que (...) proporcionan a la sociedad” (Ramsar, 2015). La situación de los humedales en la ciudad de Bogotá a través del tiempo, no ha sido ajena a esa tendencia. Los procesos de urbanización y expansión no planificada de la ciudad han generado disminución por pérdida y deterioro de 50.000 Ha, a 800 Ha de humedales en la actualidad. Algunas actividades de presión a éstos ecosistemas son disposición inadecuada de basuras, rellenos, vertimientos, conexiones erradas, que han derivado en degradación de los servicios ambientales propios de éste ecosistema acuático (PUJ, 2007), que según Woodward y Wui (2001) quienes definieron las funciones de los humedales asociadas a bienes y servicios económicos, están relacionadas, entre otras, con el control de inundaciones y alivio de tormentas.

La conservación de los humedales debe ser prioritaria en las cuencas urbanas. Su inclusión como determinante ambiental en la planificación territorial, y para ello, según Ramsar (2012) se debe partir del reconocimiento de su valor, para que las administraciones públicas lo tengan en cuenta en sus procesos de toma de decisiones, así como costos atribuibles a la pérdida y degradación de sus servicios ecosistémicos. El presente trabajo de grado le apunta a esos principios para la gestión integral del recurso hídrico, aportando argumentos técnicos para el reconocimiento y evaluación de los valores de los humedales, y de la importancia de conservarlos puesto que ofrece soluciones a diversos problemas.
1 GENERALIDADES DEL TRABAJO DE GRADO

1.1 LÍNEA DE INVESTIGACIÓN

Saneamiento de comunidades.

1.2 PLANTEAMIENTO DEL PROBLEMA

1.2.1 Problema a resolver

La urbanización, disposición de escombros y basuras, invasión de zonas de ronda de humedales y suelo permeable de las cuencas urbanas, que generan la pérdida de sus funciones ecosistémicas, entre éstas la del control de inundaciones.

1.2.2 Antecedentes del problema

La definición adoptada en Colombia para los humedales los establece como “… aquellas extensiones de marismas, pantanos, turberas o aguas de régimen natural o artificial, permanentes o temporales, estancadas o corrientes, dulces, salobres o saladas, incluyendo las extensiones de agua marina cuya profundidad en marea baja no exceda de seis metros” (Min Ambiente, 2002). Estos ecosistemas ofrecen una amplia diversidad de bienes y servicios ambientales como son la regulación de flujos hídricos, lo cual se representa en el control de inundaciones en épocas de lluvias, la recarga y descarga de acuíferos; actúan como retenedores y filtros de nutrientes en las cuencas y como biodigestores de los excesos de materia orgánica; contribuyen a la estabilidad e integridad de otros ecosistemas asociados, y adicionalmente son la base de sistemas socioculturales representando espacios para recreación, investigación científica y educación ambiental (Naranjo, et. al. 1999).

Con respecto al área de análisis, producto de la sectorización de la cuenca del río Salitre, en el estudio realizado por parte de la Universidad Militar Nueva Granada en el marco del Convenio No. 08 de 2008: Formulación del Plan de Ordenación y manejo de la cuenca del Río Salitre en el perímetro urbano del distrito capital. Informe Final de la fase de diagnóstico (el POMCA del río Salitre se encuentra en trámite), se determinó la subcuenca canal del Salitre como unidad de análisis para el presente proyecto, la cual contiene los humedales Santa María del Lago, Córdoba y Juan Amarillo. Es importante mencionar, que dentro de la matriz de conflictos ambientales, que hace parte de éste estudio, se identificaron la invasión de ronda por asentamientos subnormales y construcciones con licencias, y relleno de humedales como factores del incremento de inundaciones en la cuenca.
En el caso del humedal Santa María del Lago, declarado como parque ecológico, según la evaluación ecológica contenida en su Plan de Manejo Ambiental, “el proceso de desarrollo urbano y la construcción de la Avenida Boyacá y la Calle 80 redujo el área del humedal a 10.8 Ha y eliminó su conectividad hidráulica. Debido a este proceso, las posibilidades de conectividad con otras áreas son mínimos, razón por la cual la importancia ambiental de este espacio se centra en lo local y lo puntual” (Secretaría Distrital de Ambiente, 2008). Este hecho, ha incidido en el limitado desarrollo de suelos y vegetación. La situación del humedal Córdoba, por su parte, centra su problemática ambiental en el fenómeno de sedimentación que ha llevado a una pérdida de la capacidad de almacenamiento entre el año 1985 y el año 2000 de cerca de 100.000 m³ (Salazar, 2005). Por otra parte, este humedal se encuentra fragmentado en tres sectores producto de la construcción de las avenidas Suba, Boyacá y 127 (IDEA, 2007).

Finalmente, con respecto al humedal Juan Amarillo, al igual que los anteriormente expuestos, han sido objeto de procesos de urbanización diversos y acelerados, que ha modificado su paisaje a raíz de las zonas de urbanización del territorio aledaño al humedal Tibabuyes (Acueducto de Bogotá y UICN, 2010).

1.2.3 Pregunta de investigación

¿Cómo influye el cambio de uso de suelo en los humedales Santa María del Lago, Córdoba y Juan Amarillo en la respuesta hidrológica de la subcuenca urbana Canal Salitre?

1.2.4 Justificación

Los ecosistemas de humedal del distrito capital, han sufrido a lo largo de décadas un proceso de transformación y degradación de sus valores y atributos que han generado repercusiones en el cumplimiento de sus funciones naturales como ecosistemas acuáticos, dentro de su contexto regional que es la sabana de Bogotá. Una de las funciones de los humedales, que generan valor en términos de servicios ecosistémicos, es el de control de inundaciones y alivio de tormentas.

Esta función, adquiere gran importancia en lo que se conoce como cuenca urbana, puesto que, la escala de tiempo para sus procesos hidrológicos se reduce con respecto a la cuenca rural, es decir, los tiempos de concentración pasan a medirse en minutos y por esta razón la cuenca urbana será más sensible a efectos de lluvias muy intensas y de corta duración. El impacto del proceso urbanizador sobre la respuesta de una cuenca, se resume en los efectos de la impermeabilización de las cuencas urbanas (ver Figura 1-1): aumento del volumen total de escorrentía como consecuencia de la reducción de la infiltración; aumento del caudal punta, se acorta el tiempo de concentración consecuencia del aumento de velocidades; la calidad del agua de escorrentía se deteriora pues al circular por la superficie arrastra todo tipo de elementos existentes en la ciudad.
A través de ésta propuesta, se espera concluir con respecto a la función de los suelos asociados a los humedales en la subcuenca del canal Salitre, como áreas verdes o zonas blandas, que juegan un papel determinante en la respuesta hidrológica de la misma, al aumentar la capacidad de infiltración y reducir la escorrentía superficial. Llegando a determinar el impacto para la ciudad, en términos de valoración del servicio ecosistémico de control de inundaciones y alivio de tormentas, de la pérdida de área de humedales por procesos de urbanización, relleno o disposición de escombros.

Figura 1-1. Influencia de la urbanización sobre la respuesta hidrológica de una cuenca.

Fuente: Murcia Baleguer, 2011

Con respecto a la metodología, se ha seleccionado el método de número de curva desarrollado por el Soil Conservation Service (SCS, actualmente Natural Resources Conservation Service - NRCS) de Estados Unidos durante los años 50, debido a que permite estimar la escorrentía en pequeñas cuencas con unas condiciones de cobertura y tipo de suelo determinados, y así analizar la influencia de los cambios de uso del suelo. Su aplicación se ha desarrollado para áreas agrícolas y áreas urbanas. En ambos casos se modeló la pérdida de infiltración considerando únicamente los procesos que la controlan en la superficie, sin tener en cuenta los procesos de vertiente que controlan el flujo subsuperficial, y se hizo de forma agregada, obteniendo las pérdidas totales por infiltración de un evento.

Teniendo en cuenta lo anterior, la subcuenca del canal Salitre, permite estudiar una unidad de análisis apropiada para este caso de estudio, puesto que contiene tres humedales: Juan Amarillo, Córdoba y Santa María del Lago, además de suelo urbano aledaño; y la escala y proporciones de los sistemas humedales-suelo urbano permite observar diferencias modelando el sistema hidrológico y la respuesta del mismo en términos de precipitación efectiva para el escenario actual, y para un escenario de urbanización progresiva.

Dentro de éste contexto, a partir de la aplicación de conocimientos adquiridos en la cátedra de hidrología y, a partir de modelos de simulación hidrológica, que permitan incorporar el método de número de curva, se determinará cómo influye el cambio de uso de suelo en los
humedales Santa María del Lago, Córdoba y Juan Amarillo en la respuesta hidrológica de la subcuenca urbana Canal Salitre.

1.2.5 Objetivo general

Determinar el impacto del proceso urbanizador de las áreas de los humedales Santa María del Lago, Córdoba y Juan Amarillo en la respuesta hidrológica de la subcuenca urbana Canal Salitre mediante el método de número de curva.

1.2.6 Objetivos específicos

1. Determinar el comportamiento de la intensidad de la precipitación por unidad de tiempo (hietograma) a partir de curvas IDF.

2. Generar cartografía de la subcuenca del Canal Salitre relacionada con uso del suelo, tipo de suelo para la determinación del número de curva, y variar estos elementos para las condiciones actuales, y escenarios de aumento de la urbanización de las coberturas permeables.

3. Aplicar un modelo hidrológico, que permita establecer los hidrogramas de la subcuenca del canal Salitre para los escenarios definidos.

4. Comparar los resultados obtenidos de cada escenario para determinar cómo influye la urbanización del suelo permeable asociado a los humedales Santa María del Lago, Córdoba y Juan Amarillo en la respuesta hidrológica de la subcuenca del canal Salitre.
2 MARCOS DE REFERENCIA

2.1 MARCO CONCEPTUAL

2.1.1 Escorrentía Superficial

“La escorrentía superficial comprende el exceso de la precipitación que ocurre después de una lluvia intensa y se mueve libremente por la superficie del terreno, y la escorrentía de una corriente de agua, que puede ser alimentada tanto por el exceso de precipitación como por las aguas subterráneas.” (Monsalve S., 1995, pág. 177).

2.1.2 Método de Número de Curva (CN)

El Soil Conservation Service de los Estados Unidos de América, SCS, desarrolló un método denominado número de curva de escorrentía CN, para calcular las abstracciones de una tormenta, las cuales incluyen la interceptión, la detención superficial y la infiltración propiamente dicha.

En este método, la profundidad de escorrentía (es decir, la profundidad efectiva de precipitación) es una función de la profundidad total de precipitación y de un parámetro de abstracción referido al número de curva de escorrentía, denominado número de curva o CN. El número de curva varía en un rango de 1 a 100, existiendo una función de las siguientes propiedades productoras de escorrentía de la hoya hidrográfica: (1) tipo de suelo hidrológico, (2) utilización y tratamiento del suelo, (3) condiciones de la superficie del terreno, y (4) condición de humedad antecedente del suelo.

El método del número de curva de escorrentía fue desarrollado a partir de datos de precipitación y escorrentía de 24 horas y, como tal, debe ser usado hasta esta última duración. No toma explícitamente en consideración las variaciones temporales de intensidad de lluvia. La distribución temporal de precipitación puede ser introducida en una etapa posterior.

Existe una cierta cantidad de precipitación I_a (Abstracción inicial antes del encharcamiento) para la cual no ocurrirá escorrentía, luego de eso, la escorrentía potencial es la diferencia entre P e I_a. La metodología del Número de Curva considera como variables en su determinación: La precipitación, representada en este caso por la precipitación para un período de tiempo previamente seleccionado; El complejo de suelo - hidrológico que considera la interrelación suelo - cobertura vegetal; La condición de humedad antecedente; de acuerdo con estas variables se fija un número de curva (CN) que representa tal interrelación.
Figura 2-1. Variables en el método de abstracciones de precipitación del SCS: $I_a =$ abstracción inicial, $P_e =$ exceso de precipitación; $F_a =$ abstracción continuada, $P =$ precipitación total.

Los criterios para la clasificación del tipo y uso del suelo, condición hidrológica y condición de humedad antecedentes aplicando el método se presentan en las tablas del Anexo 1.

2.1.3 Introducción al EPA SWMM 5.0.

El Stormwater Management Model (modelo de gestión de aguas pluviales) fue desarrollado por la Agencia de Protección del Medioambiente de los Estados Unidos en 1971. Hoy en día, es uno de los software de cálculo de drenaje urbano más extendido. Una de las claves de la popularidad de este software es que es de dominio público y, por lo tanto, gratuito.

Es un modelo dinámico de simulación de precipitaciones que permite reproducir el comportamiento hidrológico e hidráulico de un sistema de drenaje urbano, tanto en términos de la escorrentía como en términos de calidad de la misma. La edición actual, que corresponde a la 5ª versión del programa, se caracteriza por su interfaz gráfica tipo Windows y la incorporación de diversos objetos que permiten al usuario realizar las simulaciones numéricas del sistema de drenaje estudiado.

La componente hidrológica de EPA SWMM 5.0 utiliza un modelo agregado de depósito no lineal para calcular los hidrogramas de escorrentía superficial que se generan en la cuenca urbana debido a la precipitación. Este modelo de depósito no lineal considera también los procesos de infiltración, evaporación y almacenamiento en superficie, y es aplicable tanto a zonas impermeables como permeables de la cuenca de estudio (Murcia Balaguer, 2014).
2.2 MARCO TEÓRICO

2.2.1 Humedales y su función ecosistémica en el control de inundaciones

Los humedales “retienen” las precipitaciones fuertes, evitando posibles inundaciones aguas abajo. Los humedales almacenan el agua en el suelo o la retienen en la superficie de lagos, pantanos, etc., reduciendo la necesidad de construir onerosas obras de ingeniería. La vegetación de los humedales desempeña también una función en la reducción de la velocidad de circulación de las aguas de crecida. En un estudio realizado en los EE.UU. se estimó que 0,4 hectáreas de humedal son capaces de almacenar más de 6.000 metros cúbicos de agua de crecida. (RAMSAR, 2012).

2.2.2 Cuencas urbanas y problemática ambiental asociada a la urbanización

La urbanización de las cuencas es el proceso por el cual las superficies ocupadas por las ciudades se instalan y crecen sobre paisajes ambientalmente sensibles de los lechos y bordes de los cauces fluviales. (...) Estas zonas deberían ser consideradas como hábitats preferenciales para la recreación de la sociedad, protección de la naturaleza y la biodiversidad, control climático y por sobre todo, destinadas a brindar seguridad a la población frente a las amenazas naturales, tales como inundaciones y anegamientos (Vidal y Romero, 2010). Las funciones y servicios ambientales de las áreas verdes pasan a ser inmediatamente más relevantes que sus significados estéticos. Entre éstos se cuentan en especial el servir como áreas de infiltración profunda y almacenamiento de las aguas de lluvia, y consecuentemente, de control del escurrimiento superficial y de las inundaciones.

Finalmente, la urbanización de las cuencas ha significado reemplazar usos agrícolas y cubiertas de vegetación de los suelos, por superficies duras, tales como calles y edificaciones, que han modificado las tasas de impermeabilización, aumentando la escorrentía superficial y subterránea. Estas transformaciones han provocado una disminución de la infiltración de las aguas de lluvia y consecuentemente un aumento en el escurrimiento y por lo tanto, un incremento en la capacidad de erosión y transporte de sedimentos, todo lo cual se debería traducirse en la ocurrencia de inundaciones y anegamientos de mayor magnitud.

2.3 MARCO GEOGRÁFICO

El sistema hídrico superficial de este caso de estudio corresponde a la subcuenca del Canal Salitre, la cual hace parte de la cuenca del Río Salitre en la ciudad de Bogotá. Según la formulación del plan de ordenación y manejo de la cuenca del río Salitre en el perímetro urbanodel Distrito Capital (SDA, 2008), este río nace en los cerros orientales donde recibe el
nombre de Río Arzobispo, a la cota 3225 msnm y tiene una longitud de 21.56 kilómetros. El Río Arzobispo se desarrolla con rumbo sureste-noreste principalmente para continuar ya convertido en el Canal Salitre con dirección sur-norte hasta la calle 68, desde allí recibe el Canal Salitre dos importantes cursos de agua: los canales Río Negro y Río Nuevo. A partir de este punto amplía su cauce y disminuye su pendiente, dirigiéndose hacia el río Bogotá y recibiendo en este recorrido las aguas de los humedales de Córdoba, el cual entrega directamente a este canal sin conectarse con el lago del club Los Lagartos.

A partir de la transversal 91, punto donde nace el humedal Juan Amarillo. El cual también es llamado laguna de Tibabuyes. Este se encuentra al noroccidente de la ciudad, dentro del área inundable de los ríos Bogotá y Juan Amarillo o Salitre. Es el humedal más grande que sobrevive actualmente en la ciudad. Se encuentra en jurisdicción de dos localidades la porción norte a la localidad de Suba y la sur a la localidad de Engativá.

El canal Salitre se desarrolla por el costado sur de éste, vertiendo aguas hacia los mismos para crecientes con períodos de retorno iguales o superiores a 10 años. El canal se encuentra revestido hasta 1900 m aguas abajo (Avenida Cundinamarca), sección a partir de la cual continúa en tierra hasta su entrega al Río Bogotá.

En la parte final del recorrido del Canal Salitre, así como el humedal Juan Amarillo reciben numerosas entregas de canales y tuberías pluviales, siendo una de ellas la correspondiente al humedal Santa María del Lago, el cual se conecta al Canal Salitre a través del sistema de tuberías pluviales. Este humedal hoy en día es ejemplo del balance entre lo natural y el urbanismo. Se encuentra rodeado de calles altamente transitadas como la Calle 80 y la Avenida Boyacá, además de amplios conjuntos de edificios. Una amplia área boscosa aún se conserva alrededor de su principal cuerpo de agua. Es uno de los pocos humedales que no está afectado actualmente por los desarrollos urbanísticos de una capital en constante crecimiento.

Elemento de central atención dentro de la hidrografía del canal Salitre es el humedal de Córdoba, pues no sólo drena una buena parte de la cuenca, sino que recibe también las restantes quebradas que nacen en los cerros orientales (Callejas; Molinos y Contador principalmente).

En el Apéndice 1, se puede observar la ubicación geográfica de la subcuenca del Canal Salitre.
3 METODOLOGÍA

Figura 3-1. Esquema metodología.

Fuente: Elaboración propia
4 ÁLISIS DE RESULTADOS

4.1 RESTRICCIONES PARA LA ELABORACIÓN DEL TRABAJO DE GRADO

El análisis de la subcuenca del canal Salitre se concentró en la relación de las áreas permeables e impermeables, a razón del tipo y uso del suelo, información obtenida por fuentes de información secundaria oficial. No fue posible incluir en el análisis las características hidráulicas de los humedales, ni las curvas de almacenamiento de los mismos, a razón de las respuestas negativas de la Secretaría Distrital de Ambiente y Acueducto de Bogotá de propiedad de la información. Los oficios de solicitud de información y las respuestas de las entidades mencionadas, se presentan en el Apéndice 2 y Apéndice 3.

4.2 PRECIPITACIÓN EN LA SUBCUENCA DEL CANAL SALITRE

4.2.1 Selección de estaciones y periodo de datos analizado

Bajo el criterio de proximidad de las estaciones meteorológicas, se realizó la consulta del catálogo de estaciones del IDEAM publicado en la página Web oficial de la entidad para series de datos diarios de precipitación, la cual presenta actualización al 6 de Mayo de 2013. De la consulta realizada se obtuvo la información señalada en la Tabla 4-1. La estación Apto El Dorado se encuentra a una distancia de 1.2 Km del humedal Jaboque, mientras que la estación Emmanuel Dalzon a 0.2 Km del humedal Córdoba. La ubicación geográfica de las estaciones puede observarse en el Apéndice 1.

<table>
<thead>
<tr>
<th>Código</th>
<th>Nombre</th>
<th>Categoría</th>
<th>Elevación (m.s.n.m)</th>
<th>Estado</th>
<th>Dpto</th>
<th>Mpio</th>
<th>Corriente</th>
<th>Fecha instalación</th>
</tr>
</thead>
<tbody>
<tr>
<td>21201230</td>
<td>EMMANUEL D’ALZON</td>
<td>PM</td>
<td>2550</td>
<td>Activa</td>
<td>Cund.</td>
<td>Bogotá</td>
<td>Tibabuyes</td>
<td>Abril 1974</td>
</tr>
<tr>
<td>21205790</td>
<td>APTO EL DORADO</td>
<td>SP</td>
<td>2547</td>
<td>Activa</td>
<td>Cund.</td>
<td>Bogotá</td>
<td>Bogotá</td>
<td>Febrero 1972</td>
</tr>
</tbody>
</table>

Fuente. IDEAM, 2013. (PM: Pluviométrica, SP: Sinóptica Principal)

Una vez seleccionadas las estaciones referidas, se procedió a determinar el periodo homogéneo de estudio para precipitación a partir de la información registrada en cada estación por cada año desde la fecha de instalación hasta los últimos registros. El período seleccionado corresponde a enero de 1988 a diciembre de 2015, es decir, un período de análisis de 28 años, con un porcentaje cercano a 100 de datos completos (Tabla 4-2).
Tabla 4-2 Porcentaje de datos de las estaciones climatológicas

<table>
<thead>
<tr>
<th>Estación</th>
<th>Variable</th>
<th>Periodo de datos seleccionado para análisis (28 AÑOS)</th>
<th>Porcentaje de datos en el periodo seleccionado</th>
<th>Porcentaje de datos faltantes en el periodo seleccionado</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMMANUEL DALZON (PM)</td>
<td>Precipitación total diaria</td>
<td>1988-2015</td>
<td>99.63%</td>
<td>0.37%</td>
</tr>
<tr>
<td>APTO EL DORADO (SP)</td>
<td></td>
<td>1988-2015</td>
<td>99.9%</td>
<td>0.09%</td>
</tr>
</tbody>
</table>

Fuente. IDEAM, 2013.

4.2.2 Análisis de homogeneidad de las series datos

En las gráficas de la Figura 4-1 se evalúa la consistencia de las observaciones a lo largo del tiempo en las estaciones que se encuentran entre las estaciones Apto El Dorado y Emmanuel Dalzon, para lo cual se comparanentre sí. Se observa que los resultados no presentan variaciones con respecto a la línea de tendencia (línea roja) y se observa proporcionalidad entre estas, por cuanto se concluye, que en la zona las series de análisis son homogéneas, y pueden completarse los datos faltantes entre una y otra.

![Figura 4-1. Análisis de homogeneidad de las series datos.](image)

Fuente: Elaboración propia.

4.2.3 Análisis de consistencia de datos

De los análisis realizados se concluyó que las dos estaciones seleccionadas, presentan registros fuera de la tendencia, para lo que fueron suprimidos y se realizó el análisis de nuevo. Dicho análisis se presentan en la Figura 4-2 indicando los diagramas de caja y los valores atípicos para el periodo seleccionado.
Figura 4-2. Análisis de consistencia de las series datos.

Fuente: Elaboración propia.

Una vez analizados los datos y la depuración de los mismos se generaron los histogramas de precipitación para todas las estaciones utilizadas en el presente estudio. En la Figura 4-3 se presenta el histograma para las estaciones medidoras de precipitación escogidas como representativas en la subcuenca del Canal Salitre. Los datos de precipitación ajustados para cada año del período analizado se pueden observar en el Apéndice 4.

Figura 4-3. Histograma de precipitación para subcuenca del Canal Salitre.

Fuente: Elaboración propia.
El promedio de la precipitación total anual de las estaciones utilizadas fue de 894.57 mm. La precipitación en la subcuenca del Canal Salitre representa una distribución de carácter bimodal, con dos temporadas de lluvias marcadas y dos secas. El primer período lluvioso, lo definen los meses de abril y mayo, y el segundo, los meses de octubre y noviembre. Los meses de marzo, junio, septiembre y diciembre son definidos como de transición entre los diferentes períodos secos - lluviosos –secos.

El primer período de lluvias, entre los meses de abril y mayo, se caracteriza por valores que oscilan de 104 mm. En el segundo período, entre los meses de octubre y noviembre, se presentan registros de 114.32 mm. Con respecto al período seco, entre los meses de enero y febrero, se presentan lluvias que oscilan entre 51.8 mm; en el segundo período seco, entre los meses de julio y agosto, los valores de precipitación oscilan de 40.9 mm.

4.3 **TORMENTA DE DISEÑO**

Se realizó la tormenta de diseño aplicando el método de bloque alterno al 50%, para la generación del hietograma, a partir de las ecuaciones de ajuste de las curvas IDF para la estación del Aeropuerto El Dorado, elaboradas para el Acueducto de Bogotá por Ingetec S.A, presentadas en el Anexo 2. Así, se obtuvieron los siguientes hietogramas (intensidad, mm/hr por duración, min) para los períodos de retorno de 3, 5, 10, 25, 75 y 100 años. Las hojas de cálculo para la obtención de los hietogramas se encuentran en el Apéndice 5. Para términos prácticos, se introdujeron al modelo EPA SWMM, los siguientes hietogramas, correspondientes a los períodos de retorno: 3, 25 y 100 años.
Según la Figura 4-4, se observa que durante los 10 primeros minutos de una tormenta en la subcuenca del Canal Salitre, para un período de retorno de 3 años, la máxima intensidad podría ser de 82.10 mm/hr, y que va aumentando a 116.12 mm/hr y 135.2 mm/hr, para los períodos de retornos de 25 y 100 años, respectivamente.

4.4 GENERACIÓN DE CARTOGRAFÍA PARA DETERMINACIÓN DE CN PONDERADO POR ESCENARIOS

Para la generación de la cartografía se utilizó el software ArcGIS 10.0, tomando como base del análisis la información secundaria de fuentes oficiales como la base de datos geográficos del Distrito para vías, cuencas, cuerpos de agua, curvas de nivel cada metro de Bogotá (IDECA, 2017) en formato .shp. La determinación del número de curva, se realizó para 5 escenarios (en adelante, E1, E2, E3, E4 y E5): el primero de ellos, E1, presenta el uso del suelo actual en la subcuenca; E2, E3, E4, y E5, de aumento progresivo de la urbanización, a razón de 25% cada uno, es decir, que el último presenta una subcuenca totalmente sin ninguna área verde. Para construir los escenarios se generaron buffers al tejido urbano continuo que representaran incrementos del 25, 50, 75 y 100 por ciento de la diferencia entre el área de la subcuenca y el tejido urbano continuo, eliminando las sobre posiciones con featureclass de coberturas por medio de la herramienta Erase.

4.4.1 Delimitación de la subcuenca

Se georreferenció el mapa Sectorización hidrográfica cuenca el salitre, realizado por la Universidad Militar Nueva Granada en el año 2007 y se procede a digitalizar la subcuenca del canal salitre. Posteriormente se aplicó la herramienta Clip del Arctool Box utilizando en el Clip Features el shape Subcuenca canal salitre para cortar cada uno de los shapes anteriores. El mapa de localización de la subcuenca delimitada se puede observar en el Apéndice 1.
4.4.2 Coberturas o uso del suelo

Se cargó la capa *Sistema Distrital de Parques y Escenarios Públicos Deportivos* en formato Web mapservice (wms) sobre el cual se digitalizaron los parques manteniendo su categorización nominal (vecinal, bolsillo, zonal existente, zonal propuesto, metropolitano existente y metropolitano propuesto). Adicionalmente, el layer *Cobertura de la tierra del Distrito Capital 2014*, del servicio web de mapas del Jardín Botánico de Bogotá “José Celestino Mutis”; esta imagen parece provenir del tratamiento de imágenes satelitales o fotografías aéreas para generar un raster con un pixel de 900 metros cuadrados, por lo cual se georreferencia una imagen de 2016 descargada de Google Earth Pro en calidad 4K, que permitiera contrastar y detallar los bordes de las entidades de polígono presentadas por el Jardín Botánico. Con base en la imagen georreferenciada y sobre la guía del layer mencionado se digitalizó el shape *Coberturas*.

Para evitar la yuxtaposición incoherente de las capas elaboradas se agruparon los separadores en permeables e impermeables, para luego agruparlas como tejido urbano continuo o como zona verde urbana. Se aplicó la herramienta *Split Polygons* para recortar las capas en sus sobreposiciones, para eliminarlas según fuera su coherencia, en cada caso, para el análisis de la permeabilidad. Se realizó un mapa de coberturas para cada uno de los escenarios, entendiendo el E1 como el uso actual del suelo, y en los siguientes escenarios un aumento del 25% de la cobertura Tejido urbano continuo, los cuales se pueden observar en el Apéndice 6 al 10.

4.4.3 Tipo de suelo

Se elaboró el mapa de asociaciones de suelos siguiendo la geomorfología del área de trabajo y las pendientes obtenidas, para contrastarlo con las asociaciones que se presentaban en el área colindante a la cuenca del salitre, para determinar la existencia de cuatro asociaciones. Posteriormente, se realizó la homologación de las asociaciones de suelos y sus perfiles taxonómicos, con respecto a los grupos definidos por Diez Hernández (2012), obteniendo clasificación C y D, caracterizadas por bajas tasas de infiltración (Tabla 4-3). El mapa de tipo de suelo se encuentra en el Apéndice 11.

<table>
<thead>
<tr>
<th>Tipos de suelo</th>
<th>Pendiente</th>
<th>Textura</th>
<th>Asociación</th>
<th>Clasificación</th>
<th>Infiltración (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLOa</td>
<td>1-3%</td>
<td>Arcillosa, arcillosa, franco limosa</td>
<td>AericEndoaquepts CT-2b</td>
<td>D</td>
<td>0-1,27</td>
</tr>
<tr>
<td>RLOa</td>
<td>1-7%</td>
<td>Franco arcillo limosa, arcillo limosa Franca, franco arenosa, arcillosa</td>
<td>PachicMelanudands AC-8 Andic Dystrudepts CT-4a</td>
<td>C</td>
<td>1,27-3,81</td>
</tr>
</tbody>
</table>
Tipos de suelo

<table>
<thead>
<tr>
<th>Pendiente</th>
<th>Textura</th>
<th>Asociación</th>
<th>Clasificación</th>
<th>Infiltración (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLVf 12 - 75%</td>
<td>Franco arcillosa, franco arcillo arenosa</td>
<td>Humic Lithic Eutrudepts TypicPlacudands Dystric Eutrudepts</td>
<td>C</td>
<td>1.27-3.81</td>
</tr>
<tr>
<td>MLSg 75%</td>
<td>Franco arcillosa, franco arcillo arenosa</td>
<td>TypicEutrudepts TypicHapludands</td>
<td>C</td>
<td>1.27-3.81</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

4.4.4 Pendientes

El mapa de pendientes se elaboró a partir del shape descargado de curvas de nivel desde el portal IDECA, sobre el cual se creó un TIN\(^1\) del cual se generó un Modelo Digital de Elevación, MDE, gracias a la rasterización del TIN; al MDE se le aplicó la herramienta de análisis espacial de superficie *Slope* para generar las pendientes en porcentajes %, estos se reclasificaron, con la herramienta *Reclassify*, para manejar los mismos rangos que establece el IGAC para la categorización de la asociación de suelos con valores literales entre “a” y “g”. Finalmente, el raster de pendientes es transformado a polígonos y se realiza una generalización con la herramienta *Delete* con la cual se combinaron todos los polígonos de área menor a 100 metros cuadrados con sus colindantes, para tener una generalización funcional a la escala de trabajo. Este mapa se puede observar en el Apéndice 1.

4.4.5 Mapa de Número de Curva

En la Tabla 4-4, se observa la homologación de las coberturas vegetales identificadas en la subcuenca del Canal Salitre con el tipo de cobertura y condición hidrológica establecida por Monsalve (1999) (ver Anexo 1), así como la asignación del CNII, y el ajuste del mismo, teniendo en cuenta que la lluvia antecedente (según los datos de precipitación consultados para las estaciones Apto El Dorado y Emmanuel D’alzon). Se aplicó, entonces la ecuación de ajustes de CN(I) (Chow, Maidment y Mays, 1994). Se realizó un mapa de número de curva para cada uno de los escenarios, los cuales se pueden observar en el Apéndice 13 al 17.

\(^1\) Las TIN son una forma de datos geográficos digitales basados en vectores y se construyen mediante la triangulación de un conjunto de vértices (puntos). Los vértices están conectados con una serie de aristas para formar una red de triángulos (ESRI, 2016).
Tabla 4-4 Clasificación de cobertura vegetal para método curva número

<table>
<thead>
<tr>
<th>COBERTURA</th>
<th>Area (Ha)</th>
<th>Usos del suelo</th>
<th>CNII Tipo de suelo</th>
<th>P acum 5 días (mm)</th>
<th>Grupo AMC (Estación inactiva)</th>
<th>Ajuste: CNI Tipo de suelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona verde urbana</td>
<td>736,19</td>
<td>Áreas urbanas totalmente desarrolladas (vegetación ya establecida): Espacios abiertos (prados, parques, campos de golf, Cementerios, etc.). Condición buena (más del 75% cubierto de pasto)</td>
<td>74 80 0</td>
<td>I</td>
<td>54,4</td>
<td>62,7</td>
</tr>
<tr>
<td>Bosque arbustal</td>
<td>0,33</td>
<td>Bosques (mala condición hidrológica) Humus vegetal, pequeños árboles y maleza destruida por pastoreo intensivo, y quemas regulares.</td>
<td>77 83 0</td>
<td>I</td>
<td>58,4</td>
<td>67,2</td>
</tr>
<tr>
<td>Mosaico de pastos y cultivos</td>
<td>252,02</td>
<td>Combinación de bosques y pastos (Mala condición hidrológica) Menos del 50% del suelo cubierto,..</td>
<td>82 86 0</td>
<td>I</td>
<td>65,7</td>
<td>72,1</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>11,32</td>
<td>Bosques (buena condición hidrológica) Bosques protegidos del pastoreo, y el suelo cubierto adecuadamente por humus vegetal.</td>
<td>70 77 0</td>
<td>I</td>
<td>49,5</td>
<td>58,4</td>
</tr>
<tr>
<td>Humedales y zonas pantanosas</td>
<td>291,84</td>
<td>Afloramiento rocoso impermeables</td>
<td>2 2 0</td>
<td>I</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Tejido urbano continuo</td>
<td>3363,99</td>
<td>Áreas Impermeables: Parqueaderos pavimentados, techos, autopistas, etc. (excluyendo derecho de vía)</td>
<td>98 98 0</td>
<td>I</td>
<td>95,4</td>
<td>95,4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Los datos obtenidos del análisis geográfico, son insumo para la modelación con EPA SWMM, a saber: área de la subcuenca, área de los humedales, pendiente media de la subcuenca, ancho máximo de la misma, área de cada cobertura para cada escenario, número de curva ponderado para cada escenario

4.5 HIDROGRAMAS DE ESCORRENTÍA

La modelación en EPA SWMM versión 5.1, permitió obtener los hidrogramas de escorrentía y el comportamiento de la infiltración en la subcuenca del Canal Salitre (Figura 4-6). Al modelo, se ajustaron los parámetros y unidades por defecto, se creó la cuenca con la asignación de los valores mencionado en el numeral 4.4.4., y finalmente se ingresó la lluvia de diseño (Figura 4-6).

Los humedales se modelaron con la opción Tanque del software. El volumen se calculó teniendo en cuenta su área (calculada en ArcGIS) y el valor de la profundidad media se obtuvo mediante información secundaria, como se especifica en la Tabla 4-5.
Este procedimiento se realiza para cada escenario: E1, E2, E3, E4 y E5, para los períodos de retorno de 3, 25 y 100 años, con el fin de que sean más visibles los cambios en los hidrogramas de escorrentía. Los resultados obtenidos se presentan en el Apéndice 18, en donde se grafican y comparan los hidrogramas de cada escenario modelado para cada período de retorno.

Para el período de retorno de 3 años, el hidrograma de escorrentía tiene un tiempo base de 23 horas. Se observa que, el E1 tiene un tiempo pico de 1,4 horas, mientras que los demás escenarios alcanzan el caudal de escorrentía pico a las 1,3 horas. En la Tabla 4-6, se presenta la comparación de resultados entre escenarios en términos de CN y caudal pico de los hidrogramas, se observa que los caudales máximos para cada escenario aumentan conforme aumenta el número de curva, o la prevalencia del área urbanizada. Así, si aumenta un 25% el área urbanizada, con respecto al escenario actual, el caudal pico aumenta un 1,77%; en consonancia,
ante un escenario del 100% del área de la subcuenca urbanizada, el caudal pico de escorrentía se verá aumentado en un 12,33%. Esto se ve reflejado, además, en que el hidrograma del E5 presenta un aumento significativo con respecto a los otros 4 escenarios (ver Tabla 4-6).

Tabla 4-5 Cálculo de volumen estimado de humedales Santa María del Lago, Córdoba y Juan Amarillo

<table>
<thead>
<tr>
<th>Humedal</th>
<th>Área Ha</th>
<th>Profundidad m</th>
<th>Volumen m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa María del lago</td>
<td>5,64</td>
<td>2,5 (1)</td>
<td>1.410.00</td>
</tr>
<tr>
<td>Córdoba</td>
<td>40,51</td>
<td>1,5 (2)</td>
<td>607.650</td>
</tr>
<tr>
<td>Juan amarillo</td>
<td>222,76</td>
<td>2,5 (3)</td>
<td>5.569.000</td>
</tr>
</tbody>
</table>

Tabla 4-5 Valores morfométricos de los humedales

Fuente: Valores de las alturas promedio de los humedales, 1. (Bogota, s.f.), 2. (EAAB-UNIANDES, s.f.) 3. (JULIANA HERNÁNDEZ-R. - J. ORLANDO RANGEL-CH., 2009)

Tabla 4-6 Comparativo de resultados de caudales y tiempos pico entre escenarios T=3 años.

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal pico</td>
<td>LPS</td>
<td>322.785</td>
<td>328.513</td>
<td>335.969</td>
<td>347.618</td>
</tr>
<tr>
<td>Tiempo pico</td>
<td>Hora</td>
<td>1,4</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3</td>
</tr>
<tr>
<td>% aumento caudal pico con respecto a E1</td>
<td>%</td>
<td>0</td>
<td>1,77</td>
<td>4,08</td>
<td>7,69</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Ahora, para un período de retorno de 25 años, se mantiene el tiempo base de 23 horas. Los tiempos pico, se mantienen en 1,4 horas para todos los escenarios. Los caudales de escorrentía que podrían presentar para un T=25 años son mayores, y se observa también, que se reducen las brechas entre los porcentajes de aumento de estos caudales para los escenarios de urbanización progresiva (ver Tabla 4-7). De la misma forma se evidencia para el período de retorno de 100 años, se hacen menos perceptibles las diferencias entre caudales pico entre escenarios (Tabla 4-8).
Tabla 4-7 Comparativo de resultados de caudales y tiempos pico entre escenarios T=25 años.

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal pico</td>
<td>LPS</td>
<td>561.336</td>
<td>570.459</td>
<td>581.296</td>
<td>596.781</td>
</tr>
<tr>
<td>Tiempo pico</td>
<td>Hora</td>
<td>1,4</td>
<td>1,4</td>
<td>1,4</td>
<td>1,4</td>
</tr>
<tr>
<td>% aumento caudal pico con respecto a E1</td>
<td>%</td>
<td>0</td>
<td>1,63</td>
<td>3,56</td>
<td>6,31</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Tabla 4-8 Comparativo de resultados de caudales y tiempos pico entre escenarios T=100 años.

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal pico</td>
<td>LPS</td>
<td>707.471</td>
<td>717.951</td>
<td>730.075</td>
<td>746.793</td>
</tr>
<tr>
<td>Tiempo pico</td>
<td>Hora</td>
<td>1,4</td>
<td>1,4</td>
<td>1,4</td>
<td>1,4</td>
</tr>
<tr>
<td>% aumento caudal pico con respecto a E1</td>
<td>%</td>
<td>0</td>
<td>1,48</td>
<td>3,19</td>
<td>5,56</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

En la Tabla 4-9 se reúnen los resultados de la modelación en EPA SWMM en términos de infiltración, precipitación efectiva o escorrentía total, caudal pico de escorrentía, coeficiente de escorrentía y número de curva. Estos resultados confirman una relación indirectamente proporcional entre el número de curva y la infiltración total, y directa entre el número de curva y la escorrentía total. El coeficiente de escorrentía, relacionado con la impermeabilidad o saturación del suelo, coincide con el comportamiento del número de curva en los escenarios de crecimiento del tejido urbano sobre las áreas verdes de la subcuenca del Canal Salitre.

Tabla 4-9 Resumen resultados por escenario y T.

![Diagrama de resultados](image-url)
T 25 AÑOS

<table>
<thead>
<tr>
<th>Escenarios</th>
<th>Precip Total (mm)</th>
<th>Infil Total (mm)</th>
<th>Escur. Total (mm)</th>
<th>Escur. Punta Total (mm)</th>
<th>Coef</th>
<th>CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>104,718</td>
<td>11,504</td>
<td>92,102</td>
<td>561,335,916</td>
<td>0.88</td>
<td>82,13</td>
</tr>
<tr>
<td>E2</td>
<td>104,718</td>
<td>10,175</td>
<td>93,543</td>
<td>570,459,104</td>
<td>0.892</td>
<td>84,72</td>
</tr>
<tr>
<td>E3</td>
<td>104,718</td>
<td>8,558</td>
<td>95,160</td>
<td>581,296,42</td>
<td>0.908</td>
<td>87,58</td>
</tr>
<tr>
<td>E4</td>
<td>104,718</td>
<td>5,767</td>
<td>97,77</td>
<td>596,780,769</td>
<td>0.934</td>
<td>91,36</td>
</tr>
<tr>
<td>E5</td>
<td>104,718</td>
<td>2,943</td>
<td>100,573</td>
<td>614,371,438</td>
<td>0.96</td>
<td>95,4</td>
</tr>
</tbody>
</table>

T 100 AÑOS

<table>
<thead>
<tr>
<th>Escenarios</th>
<th>Precip Total (mm)</th>
<th>Infil Total (mm)</th>
<th>Escur. Total (mm)</th>
<th>Escur. Punta Total (mm)</th>
<th>Coef</th>
<th>CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>123,544</td>
<td>12,03</td>
<td>110,406</td>
<td>707,471,043</td>
<td>0.894</td>
<td>82,13</td>
</tr>
<tr>
<td>E2</td>
<td>123,544</td>
<td>10,531</td>
<td>111,901</td>
<td>717,950,909</td>
<td>0.906</td>
<td>84,72</td>
</tr>
<tr>
<td>E3</td>
<td>123,544</td>
<td>8,662</td>
<td>113,748</td>
<td>730,074,556</td>
<td>0.921</td>
<td>87,58</td>
</tr>
<tr>
<td>E4</td>
<td>123,544</td>
<td>5,77</td>
<td>116,588</td>
<td>740,793,181</td>
<td>0.944</td>
<td>91,36</td>
</tr>
<tr>
<td>E5</td>
<td>123,544</td>
<td>2,939</td>
<td>119,404</td>
<td>764,915,484</td>
<td>0.966</td>
<td>95,4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
5 CONCLUSIONES Y RECOMENDACIONES

El programa EPA SWMM 5.1 permitió determinar los hidrogramas de escorrentía, así como el comportamiento de la precipitación efectiva, coeficiente de escorrentía e infiltración para la condición actual y para los escenarios propuestos con variación en el número de curva, ante diferentes períodos de retorno. El software ArcGIS 10.0 permitió obtener valores morfométricos de la subcuenca y los valores de número de curva para cada uno de los escenarios propuestos, con base en el uso y tipo de suelo.

La subcuenca del canal Salitre presenta un comportamiento bimodal de la precipitación, con períodos de lluvias entre abril y mayo, y octubre y noviembre, donde se registran lluvias de hasta 114 mm mensuales. Las tormentas, durante los 10 primeros minutos, para un período de retorno de 3 años, podría alcanzar una intensidad de 82,10 mm/hr, y que va aumentando a 116,12 mm/hr y 135,2 mm/hr, para los períodos de retornos de 25 y 100 años, respectivamente.

La subcuenca, con un área total de 4.6557 ha, presenta una cobertura del suelo, mayoritariamente urbano, ocupando un 72,25% de su área, mientras los humedales Juan Amarillo, Córdoba y Santa María del Lago, apenas un 6,2%, y las áreas verdes asociados a estos, un 5,6%. Esta reducción del suelo blando o permeable de estos ecosistemas, se ha debido a la construcción de vías, urbanizaciones e invasión de zonas de ronda.

Las condiciones de uso actual del suelo, sumado a suelos arcillosos a franco arcillosos de baja infiltración (entre 0 y 3.81 mm/hr), dan como resultado un valor del número de curva de 82,13. Según la modelación, para este escenario actual, se presentaría un caudal de escorrentía de 322,8 l/s. Los escenarios subsecuentes de urbanización progresiva en un 25, 50, 75 y 100%, reafirman este comportamiento: el valor de curva número aumenta si se aumentan coberturas impermeables; al aumentar el número de curva, disminuye la infiltración total. Lo que finalmente genera aumento de los caudales de escorrentía pico hasta en un 12%, con respecto al escenario actual. El porcentaje de aumento tiende a no ser tan alto, debido a que las zonas blandas ya poseen unas características de impermeabilidad significativa por ser mayoritariamente arcillosas.

El aumento de los caudales de escorrentía, a razón del aumento de la urbanización, demuestra reducción en la respuesta hidrológica de la subcuenca, teniendo en cuenta, la reducción del suelo o áreas blandas, asociadas a los humedales, y no la capacidad de almacenamiento de los sistemas de humedales, dadas las restricciones de información para el desarrollo de este trabajo de grado. Sin embargo, aquí también radica la oportunidad de futuras
líneas de investigación hacia la modelación de la subcuenca introduciendo las características hidráulicas de los humedales y del alcantarillado fluvial; el análisis más profundo de la variación de los hidrogramas con respecto a las variables obtenidas, así como de los errores que puede generar el software EPA SWMM; y el costo ambiental de la pérdida de áreas verdes y suelo blando en la subcuenca, en términos de servicios ecosistémicos.

Con base en lo anterior, se hace énfasis en que cualquier degradación o pérdida ulterior de humedales como resultado del desarrollo o el ordenamiento urbanos debe evitarse y, cuando ello no sea posible, se debe mitigar cualquier impacto que generen, y todo efecto residual debe abordarse de manera apropiada por ejemplo mediante medidas de compensación, como la restauración de humedales. Los gobiernos deben prestar atención prioritaria a las amenazas de calamidades naturales y desastres de origen humano y sus impactos en las poblaciones urbanas y los humedales, y adoptar medidas convergentes para reforzar la resiliencia.
IDEAM. (2014). *Series Hidrométricas*. Bogotá: IDEAM.

Colombia, Convenio de cooperación tecnológica acueducto de Bogotá - Conservación internacional. (2010). *Plan de manejo ambiental*. Bogotá d.c.

Pontificia universidad Javeriana - insituto de estudios ambientales IDEADE. (2007). *Formulacion y planes de manejo ambiental de los humedales de techo y la vaca*.

ZAMORA, DAVID FELIPE PÉREZ - DAVID ANDRÉS. (2015). *DESCRIPCIÓN Y CONTEXTO DE LAS CUENCAS DEL DISTRITO CAPITAL (TORCA, SALITRE, FUCHA Y TUNJUELO)*. BOGOTÁ.
ANEXO 1. TABLAS REFERENCIA PARA APLICACIÓN DEL MÉTODO DE CURVA NÚMERO.

Tabla 1- Clasificación para tipo de suelo

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Texturas</th>
<th>Infiltración final (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Arenosa</td>
<td>7,62 – 11,43</td>
</tr>
<tr>
<td></td>
<td>Arenolimosa</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Franca-arenosa</td>
<td>3,81 – 7,62</td>
</tr>
<tr>
<td></td>
<td>Franca</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fanco-arcillo-arenosa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fanco-limosa</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Franco-arcillosa</td>
<td>1,27 – 3,81</td>
</tr>
<tr>
<td></td>
<td>Franco-arcillo-limosa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arcillo-arenosa</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Arcillosa</td>
<td>0 – 1,27</td>
</tr>
</tbody>
</table>

Figura 1- Triangulo textural aplicado al método curva número

Tabla 2- Precipitación acumulada para tres niveles de condición de humedad antecedente

<table>
<thead>
<tr>
<th>CONDICIÓN DE HUMEDAD ANTECEDENTE (AMC)</th>
<th>PRECIPITACIÓN ACUMULADA DE LOS 5 DÍAS PREVIOS AL EVENTO EN CONSIDERACIÓN (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0 - 36</td>
</tr>
<tr>
<td>II</td>
<td>36.1 - 52.5</td>
</tr>
<tr>
<td>III</td>
<td>Más de 52.5</td>
</tr>
</tbody>
</table>

Tabla 2- Número de curva de escorrentía para áreas urbanas para una condición de humedad antecedente promedio AMCII e Ia=0.2S

<table>
<thead>
<tr>
<th>TIPO DE COBERTURA Y CONDICIÓN HIDROLÓGICA</th>
<th>% PROMEDIO ÁREAS IMPERMEABLES<sup>1</sup></th>
<th>NUMERO DE CURVAS PARA GRUPOS DE SUELOS HIDROLÓGICOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areas urbanas totalmente desarrolladas (vegetación ya establecida):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espacios abiertos (prados, parques, campos de golf, cementerios, etc.)<sup>2</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condición pobre (menos del 50% cubierto de pasto)</td>
<td>0.6</td>
<td>0.79</td>
</tr>
<tr>
<td>Condición regular (del 50% al 75% cubierto de pasto)</td>
<td>0.45</td>
<td>0.59</td>
</tr>
<tr>
<td>Condición buena (más del 75% cubierto de pasto)</td>
<td>0.36</td>
<td>0.51</td>
</tr>
<tr>
<td>Áreas impermeables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavimentados</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Pavimentados, zanjas abiertas (incluyendo derecho de vía)</td>
<td>0.63</td>
<td>0.89</td>
</tr>
<tr>
<td>Grava (incluyendo derecho de vía)</td>
<td>0.78</td>
<td>0.85</td>
</tr>
<tr>
<td>Tierra (incluyendo derecho de vía)</td>
<td>0.72</td>
<td>0.82</td>
</tr>
<tr>
<td>Areas desertas urbanas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paisajes geológicos naturales (solamente áreas permeables)<sup>3</sup></td>
<td>0.63</td>
<td>0.77</td>
</tr>
<tr>
<td>Paisajes desérticos artificiales (barreras impermeables de maleza, arbustos de desierto con 1 a 2 pulg de diámetro; Cubierta de arena o grava y orillas de áreas húmedas)</td>
<td>0.68</td>
<td>0.86</td>
</tr>
<tr>
<td>Areas urbanas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comercial y de negocios</td>
<td>0.85</td>
<td>0.89</td>
</tr>
<tr>
<td>Industrial</td>
<td>0.72</td>
<td>0.81</td>
</tr>
<tr>
<td>Areas residenciales por promedio del tamaño del lote:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/8 de acre o menos (500 m² o menos)</td>
<td>0.95</td>
<td>0.77</td>
</tr>
<tr>
<td>1/4 acre (1012 m²)</td>
<td>0.95</td>
<td>0.81</td>
</tr>
<tr>
<td>1/2 acre (1353 m²)</td>
<td>0.83</td>
<td>0.87</td>
</tr>
<tr>
<td>1 acre (2025 m²)</td>
<td>0.75</td>
<td>0.84</td>
</tr>
<tr>
<td>2 acres (6100 m²)</td>
<td>0.64</td>
<td>0.78</td>
</tr>
<tr>
<td>Areas urbanas desarrolladas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas permeables conformadas (solamente áreas permeables, sin vegetación)</td>
<td>0.77</td>
<td>0.86</td>
</tr>
</tbody>
</table>

ANEXO 2. CURVAS IDF APTO EL DORADO

<table>
<thead>
<tr>
<th>Duración</th>
<th>Tr 3 Años</th>
<th>Tr 5 Años</th>
<th>Tr 10 Años</th>
<th>Tr 25 Años</th>
<th>Tr 50 Años</th>
<th>Tr 100 Años</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>69.30</td>
<td>77.20</td>
<td>87.10</td>
<td>99.60</td>
<td>108.90</td>
<td>118.10</td>
</tr>
<tr>
<td>30</td>
<td>49.10</td>
<td>55.00</td>
<td>67.80</td>
<td>78.80</td>
<td>85.70</td>
<td>95.50</td>
</tr>
<tr>
<td>60</td>
<td>29.80</td>
<td>33.80</td>
<td>38.80</td>
<td>45.10</td>
<td>49.80</td>
<td>54.50</td>
</tr>
<tr>
<td>120</td>
<td>16.20</td>
<td>18.30</td>
<td>21.00</td>
<td>24.30</td>
<td>26.90</td>
<td>29.30</td>
</tr>
<tr>
<td>360</td>
<td>5.60</td>
<td>6.30</td>
<td>7.30</td>
<td>8.50</td>
<td>9.40</td>
<td>10.30</td>
</tr>
</tbody>
</table>

PARAMETROS DE LA ECUACIÓN DE AJUSTE

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Tr 3 Años</th>
<th>Tr 5 Años</th>
<th>Tr 10 Años</th>
<th>Tr 25 Años</th>
<th>Tr 50 Años</th>
<th>Tr 100 Años</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>4206.51</td>
<td>5175.75</td>
<td>5971.51</td>
<td>7227.76</td>
<td>8257.95</td>
<td>9159.46</td>
</tr>
<tr>
<td>X₀</td>
<td>24.70</td>
<td>26.40</td>
<td>27.40</td>
<td>28.70</td>
<td>29.70</td>
<td>30.30</td>
</tr>
<tr>
<td>C₂</td>
<td>-1.11</td>
<td>-1.13</td>
<td>-1.13</td>
<td>-1.14</td>
<td>-1.14</td>
<td>-1.14</td>
</tr>
</tbody>
</table>

\[
I (T) = C_1 \left(\frac{D + X_0}{T} \right)^2
\]

- \(I \) = Intensidad (mm/h)
- \(T \) = Periodo de Retorno (Años)
- \(D \) = Duración (min)
- \(X_0, C_1 \) y \(C_2 \) = Parámetros de ajuste
CORRELACIÓN ENTRE INTENSIDADES

$y = 1.0013x + 0.0615$
$R^2 = 0.9999$

PERIODO DE RETORNO
- 3 Años
- 5 Años
- 10 Años
- 25 Años
- 50 Años
- 100 Años

Intensidades obtenidas del análisis de Frecuencia (mm/h)

<table>
<thead>
<tr>
<th>PERÍODO DE RETORNO</th>
<th>Intensidades obtenidas de la ecuación de ajuste (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Años</td>
<td>2.00</td>
</tr>
<tr>
<td>5 Años</td>
<td>2.05</td>
</tr>
<tr>
<td>10 Años</td>
<td>2.10</td>
</tr>
<tr>
<td>25 Años</td>
<td>2.20</td>
</tr>
<tr>
<td>50 Años</td>
<td>2.30</td>
</tr>
<tr>
<td>100 Años</td>
<td>2.40</td>
</tr>
</tbody>
</table>

COEFICIENTE DE CORRELACIÓN ENTRE LAS INTENSIDADES OBTENIDAS Y LAS CALCULADAS

<table>
<thead>
<tr>
<th>Tr</th>
<th>3 Años</th>
<th>5 años</th>
<th>10 Años</th>
<th>25 Años</th>
<th>50 años</th>
<th>100 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.9999</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9999</td>
</tr>
<tr>
<td>Pendiente</td>
<td>1.0069</td>
<td>1.0055</td>
<td>1.0061</td>
<td>1.0059</td>
<td>1.0056</td>
<td>1.0056</td>
</tr>
</tbody>
</table>
APÉNDICES
APÉNDICE 1. LOCALIZACIÓN.
Determinación del impacto del proceso urbanizador sobre la respuesta hidrológica de la subcuenca del canal salitre mediante el método de curva número.

Convenciones:
- Estación meteorológica
- Cuerpos de agua
- Contorno de agua
- Subcuenca canal salitre

Titulares del proyecto:
- Jenny Carolina Grillo González
- Ronald Eduardo Cala Amaro

Nombre: Carlos Daniel Montes. Ingeniero Civil MSc

22 de Mayo de 2017
Mapa Localización 01 de 13
APÉNDICE 2. OFICIOS SOLICITUDES DE INFORMACIÓN.

Bogotá, 8 de febrero de 2017.

Señores,

SECRETARIA DISTRITAL DE AMBIENTE DE BOGOTÁ
La Ciudad.

Reciban un cordial saludo.

Con miras a desarrollar nuestro trabajo de grado para optar al título de especialistas en recursos hídricos hemos decidido centrar nuestro tema de análisis en la determinación del impacto del proceso urbanizador sobre la respuesta hidrológica de la subcuenca del canal Salitre mediante el método de curva número. Por tal motivo, solicitamos comodamente información documental y/o cartográfica sobre los siguientes aspectos:

- curvas de acumulación de caudales de los humedales Santa María del Lago, Córdoba y Juan Amarillo.
- batimetrías longitudinales de los humedales Santa María del Lago, Córdoba y Juan Amarillo.
- caudales de entrada a humedales (canales) Santa María del Lago, Córdoba y Juan Amarillo o a la subcuenca del canal Salitre.
- dimensiones y características de dichos canales.
- Cartografía en formato shape del POMCA del río Salitre en el perímetro urbano del distrito capital.

Dicho trabajo de grado luego de validado por la universidad, podrá ser aportado a su entidad.

Agradecemos la atención prestada y en espera de pronta respuesta.

Cordialmente,

JENNY CAROLINA GÓRILLO GONZALEZ
Ingeniera ambiental.
Tel.: 3213365407
E-mail: jennygoster@gmail.com; ronaldcas91@hotmail.com
<table>
<thead>
<tr>
<th>Documento Identificativo</th>
<th>Zona SAP</th>
<th>Completo Anexo Firma</th>
<th>Correo Electrónico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO</td>
<td>10200017</td>
<td>info@empresa.com</td>
</tr>
<tr>
<td>Documento Identificativo</td>
<td>Zona SAP</td>
<td>Completo Anexo Firma</td>
<td>Correo Electrónico</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>10200017</td>
<td>info@empresa.com</td>
</tr>
</tbody>
</table>

ENTRADA

DOCUMENTO DE CORRESPONDENCIA
Bogotá, 6 de febrero de 2017.

Señores,

ACUEDUCTO DE BOGOTÁ

La Ciudad.

Reciban un cordial saludo.

Con miras a desarrollar nuestro trabajo de grado para optar al título de especialistas en recursos hídricos hemos decidido centrar nuestro tema de análisis en la determinación del impacto del proceso urbanizador sobre la respuesta hidrológica de la subcuenca del canal Salitre mediante el método de curva número. Por tal motivo, solicitamos cordialmente información documental y/o cartográfica sobre los siguientes aspectos:

- curvas de acumulación de caudales de los humedales Santa María del Lago, Córdoba y Juan Amarillo.
- batimetrías longitudinales de los humedales Santa María del Lago, Córdoba y Juan Amarillo.
- caudales de entrada a humedales (canales) Santa María del Lago, Córdoba y Juan Amarillo o a la subcuenca del canal Salitre.
- dimensiones y características de dichos canales.

Dicho trabajo de grado luego de validado por la universidad, podrá ser aportado a su entidad.

Agradecemos la atención prestada y en espera de pronta respuesta.

Cordialmente,

JENNY CAROLINA GRILLO GONZALEZ

Ingeniera ambiental.

Tel.: 3213365407

E-mail: jennyggaster@gmail.com; ronaldcalle97@hotmail.com
APÉNDICE 3. RESPUESTAS SOLICITUDES DE INFORMACIÓN,

Bogotá DC

Señora:

JENNY CAROLINA GRILLO GONZÁLEZ
Carrera 10 No. 12 - 32 Mosquera. Cundinamarca
Conjunto Puerto Nuevo Torre 4 apto. 215
Correo electrónico: jennygogster@gmail.com; ronaldcala91@hotmail.com
Teléfono: 321 3365407

Referencia: Respuesta radicado No. 2017ER25316. Solicitud de información documental y/o cartográfica de los PEDH Santa María del Lago, Córdoba y Juan Amarillo o subcuenca del canal Salitre.

Respetada señora Carolina Grillo,

En atención a la solicitud de la referencia, mediante la cual se solicita información documental y/o cartográfica correspondiente a curvas de acumulación de caudales, batimetrías longitudinales, caudales de entrada a humedales (canales) de los PEDH Santa María del Lago, Córdoba, Juan Amarillo y la cartografía en formato shape del río Salitre en el perímetro urbano, la Subdirección de Ecosistemas y Ruralidad - SER de la Secretaría Distrital de Ambiente – SDA, después de revisar la información documental y cartográfica oficial del Distrito existente, desde sus competencias, le informa que la entidad trasladará la petición a la Empresa de Acueducto y Alcantarillado de Bogotá – EAB-ESP, encargada de la generación y manejo de este tipo de información. Así mismo, se remitirá a la Corporación Autónoma Regional - CAR, para que, desde su competencia, si da a lugar, emita el concepto correspondiente, teniendo en cuenta que su jurisdicción hace parte del área de influencia tanto del Humedal Juan Amarillo como de la subcuenca del canal Salitre.

Atentamente,

MARIA CAROLINA GOMEZ MAHECHA
SUBDIRECCIONAL DE ECOsistemas Y ruralidad

C.C.: Dr. German Camilo Bello Zapata – Director de Gestión Ambiental y Territorial de la Corporación Autónoma Regional – CAR. Carrera 7 No. 36 – 45. Teléfono: 3209000 Ext. 1855.
Su Comunicación Rad E-2017-015180 de Febrero 20 de 2017

Gustavo Herrán Sandoval <gherran@acueducto.com.co> 3 de marzo de 2017, 10:43
Para: "ronaldcalal@hotmail.com" <ronaldcalal@hotmail.com>, "jennyggster@gmail.com" <jennyggster@gmail.com>

Cordial saludo Ingeniero Cala:

En atención a la comunicación del asunto. Atentamente nos permitimos informarle que el Aea de Hidrología Aplicada de la Empresa de Acueducto y Alcantarillado de Bogotá no posee la información hidrológica referida en su comunicación. Sin embargo, contamos con la información de lluvias que le podría servir para determinar por medios indirectos los caudales de entrada a los humedales. Por lo tanto, le sugerimos contactarse a este correo con el Ingeniero Gustavo Herrán o al teléfono 3447810.

Atentamente,

Gustavo Herrán Sandoval.

Profesional Especializado.

Dirección Ingeniería Especializada.

Tel. 344 78 10.

ESTA COMUNICACIÓN PUEDE CONTENIR MATERIAL CONFIDENCIAL Y/O INFORMACIÓN CON DERECHOS reservados del propietario, por lo tanto el uso de las mismas es exclusiva para el destinatario. Si usted recibió este material por error, por favor notifíquelo inmediatamente al remitente y borre el email y cualquier documento o documentos asociado con el email. Muchas Gracias. THIS COMMUNICATION MAY CONTAIN CONFIDENTIAL AND/OR OTHERWISE PROPRIETARY MATERIAL and is thus for use only by the intended recipient. If you received this in error, please contact the sender and delete the e-mail and its attachments from all computers.
APÉNDICE 4. DATOS PRECIPITACIÓN MENSUAL MULTIANUAL.

ESTACIÓN APTO EL DORADO

<table>
<thead>
<tr>
<th>AÑO</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>13,8</td>
<td>50,5</td>
<td>12,2</td>
<td>143,9</td>
<td>58,7</td>
<td>68,5</td>
<td>46,9</td>
<td>73,2</td>
<td>119,1</td>
<td>117,9</td>
<td>151</td>
<td>78,8</td>
<td>934,5</td>
</tr>
<tr>
<td>1989</td>
<td>11,7</td>
<td>41</td>
<td>153,6</td>
<td>32,9</td>
<td>53,8</td>
<td>48,2</td>
<td>39,1</td>
<td>34,9</td>
<td>84,8</td>
<td>82,1</td>
<td>30,7</td>
<td>66,2</td>
<td>679</td>
</tr>
<tr>
<td>1990</td>
<td>48,3</td>
<td>48,9</td>
<td>37,3</td>
<td>155,7</td>
<td>102,5</td>
<td>21,9</td>
<td>35,9</td>
<td>35,5</td>
<td>75,7</td>
<td>190,6</td>
<td>85</td>
<td>96,6</td>
<td>933,9</td>
</tr>
<tr>
<td>1991</td>
<td>25,5</td>
<td>18,3</td>
<td>126,3</td>
<td>82,6</td>
<td>110</td>
<td>27,1</td>
<td>43,4</td>
<td>31</td>
<td>54,2</td>
<td>47,1</td>
<td>103,9</td>
<td>64,1</td>
<td>733,5</td>
</tr>
<tr>
<td>1992</td>
<td>14</td>
<td>22,6</td>
<td>26,2</td>
<td>35</td>
<td>28,4</td>
<td>8,8</td>
<td>33,3</td>
<td>24,5</td>
<td>49,7</td>
<td>25,4</td>
<td>108,3</td>
<td>59</td>
<td>435,2</td>
</tr>
<tr>
<td>1993</td>
<td>34,7</td>
<td>13,8</td>
<td>78,6</td>
<td>114,2</td>
<td>106,3</td>
<td>19,7</td>
<td>60,6</td>
<td>29,2</td>
<td>63,8</td>
<td>67,5</td>
<td>146,9</td>
<td>25,5</td>
<td>760,8</td>
</tr>
<tr>
<td>1994</td>
<td>30,6</td>
<td>65,6</td>
<td>107,1</td>
<td>89,4</td>
<td>94,2</td>
<td>55</td>
<td>24,4</td>
<td>34,5</td>
<td>32,6</td>
<td>93,9</td>
<td>189,1</td>
<td>9,3</td>
<td>825,7</td>
</tr>
<tr>
<td>1995</td>
<td>3,4</td>
<td>20,7</td>
<td>68,1</td>
<td>142,3</td>
<td>126,2</td>
<td>81,1</td>
<td>55,1</td>
<td>86,7</td>
<td>56,6</td>
<td>112</td>
<td>97,3</td>
<td>78,4</td>
<td>927,9</td>
</tr>
<tr>
<td>1996</td>
<td>6,5</td>
<td>53,3</td>
<td>60</td>
<td>57,5</td>
<td>102,5</td>
<td>30,6</td>
<td>47,7</td>
<td>43,6</td>
<td>28,7</td>
<td>90,6</td>
<td>12,6</td>
<td>34,7</td>
<td>568,3</td>
</tr>
<tr>
<td>1997</td>
<td>67,3</td>
<td>16,1</td>
<td>58</td>
<td>46,4</td>
<td>59,7</td>
<td>66</td>
<td>18,8</td>
<td>14</td>
<td>25,1</td>
<td>63</td>
<td>38,1</td>
<td>2,7</td>
<td>475,2</td>
</tr>
<tr>
<td>1998</td>
<td>1,9</td>
<td>41,8</td>
<td>27,8</td>
<td>96,2</td>
<td>147,5</td>
<td>52,7</td>
<td>84,1</td>
<td>51,6</td>
<td>115,2</td>
<td>96,3</td>
<td>94,7</td>
<td>122,7</td>
<td>932,5</td>
</tr>
<tr>
<td>1999</td>
<td>43,4</td>
<td>93,8</td>
<td>62,7</td>
<td>71,2</td>
<td>68,6</td>
<td>116,9</td>
<td>29,8</td>
<td>51,3</td>
<td>140,3</td>
<td>199,3</td>
<td>101,9</td>
<td>47,9</td>
<td>1027,1</td>
</tr>
<tr>
<td>2000</td>
<td>28,3</td>
<td>123,4</td>
<td>73,9</td>
<td>57,5</td>
<td>110,9</td>
<td>61,6</td>
<td>70,1</td>
<td>55,9</td>
<td>130,6</td>
<td>90,7</td>
<td>41,5</td>
<td>41,1</td>
<td>885,5</td>
</tr>
<tr>
<td>2001</td>
<td>49,3</td>
<td>19,3</td>
<td>81,9</td>
<td>19,4</td>
<td>87</td>
<td>47,2</td>
<td>40,5</td>
<td>17,7</td>
<td>66,4</td>
<td>43,1</td>
<td>54,2</td>
<td>53,8</td>
<td>579,8</td>
</tr>
<tr>
<td>2002</td>
<td>26,8</td>
<td>16,8</td>
<td>111,5</td>
<td>134,8</td>
<td>116,3</td>
<td>74,8</td>
<td>39,7</td>
<td>22,5</td>
<td>45,5</td>
<td>55,7</td>
<td>44</td>
<td>64,1</td>
<td>752,5</td>
</tr>
<tr>
<td>2003</td>
<td>3</td>
<td>24,1</td>
<td>75,4</td>
<td>128</td>
<td>46,4</td>
<td>61,3</td>
<td>31,1</td>
<td>67,6</td>
<td>42,6</td>
<td>54,9</td>
<td>134,8</td>
<td>78,8</td>
<td>748</td>
</tr>
<tr>
<td>2004</td>
<td>22</td>
<td>98,7</td>
<td>40,8</td>
<td>197,7</td>
<td>101,4</td>
<td>51,1</td>
<td>51,2</td>
<td>19,7</td>
<td>59</td>
<td>170</td>
<td>118,6</td>
<td>31,9</td>
<td>962,1</td>
</tr>
<tr>
<td>2005</td>
<td>11,1</td>
<td>33,2</td>
<td>33,7</td>
<td>93,6</td>
<td>161,3</td>
<td>36,6</td>
<td>21,4</td>
<td>66</td>
<td>97,8</td>
<td>131,3</td>
<td>47,8</td>
<td>111,2</td>
<td>845</td>
</tr>
<tr>
<td>2006</td>
<td>58,1</td>
<td>31,7</td>
<td>214,9</td>
<td>153,7</td>
<td>194,9</td>
<td>115,4</td>
<td>16,5</td>
<td>22,7</td>
<td>25,1</td>
<td>195,6</td>
<td>91,1</td>
<td>30,2</td>
<td>1149,9</td>
</tr>
<tr>
<td>2007</td>
<td>7,6</td>
<td>10,9</td>
<td>62</td>
<td>150,6</td>
<td>125,4</td>
<td>54,2</td>
<td>56,1</td>
<td>58,9</td>
<td>18</td>
<td>200,6</td>
<td>117,4</td>
<td>82,9</td>
<td>944,6</td>
</tr>
<tr>
<td>2008</td>
<td>30,5</td>
<td>84,6</td>
<td>93,8</td>
<td>112,9</td>
<td>225,6</td>
<td>119,5</td>
<td>61,5</td>
<td>94,7</td>
<td>48,8</td>
<td>140,7</td>
<td>134,2</td>
<td>60</td>
<td>1206,8</td>
</tr>
<tr>
<td>2009</td>
<td>51,4</td>
<td>91,4</td>
<td>136</td>
<td>48</td>
<td>3,5</td>
<td>60,8</td>
<td>46,8</td>
<td>28,1</td>
<td>20,9</td>
<td>126,6</td>
<td>88,9</td>
<td>57,9</td>
<td>760,3</td>
</tr>
<tr>
<td>2010</td>
<td>6,3</td>
<td>36,6</td>
<td>23,2</td>
<td>187,3</td>
<td>160,3</td>
<td>107,8</td>
<td>136,7</td>
<td>51,8</td>
<td>76,4</td>
<td>133</td>
<td>196,6</td>
<td>134,6</td>
<td>1250,6</td>
</tr>
<tr>
<td>2011</td>
<td>52,1</td>
<td>88</td>
<td>118,1</td>
<td>242,8</td>
<td>161,3</td>
<td>113,5</td>
<td>67,2</td>
<td>60,2</td>
<td>121,7</td>
<td>165,6</td>
<td>239,8</td>
<td>122,3</td>
<td>1552,6</td>
</tr>
<tr>
<td>2012</td>
<td>63,1</td>
<td>67,5</td>
<td>140,9</td>
<td>235,9</td>
<td>89,3</td>
<td>39</td>
<td>48,5</td>
<td>50,2</td>
<td>24,3</td>
<td>131</td>
<td>56,2</td>
<td>34,7</td>
<td>980,6</td>
</tr>
<tr>
<td>2013</td>
<td>21,9</td>
<td>129</td>
<td>61,4</td>
<td>132,7</td>
<td>112,4</td>
<td>26,9</td>
<td>38</td>
<td>68,8</td>
<td>45,5</td>
<td>64,9</td>
<td>182,9</td>
<td>96,9</td>
<td>981,3</td>
</tr>
<tr>
<td>2014</td>
<td>75,6</td>
<td>77,7</td>
<td>83,4</td>
<td>83,4</td>
<td>132,9</td>
<td>41,4</td>
<td>21,8</td>
<td>29,1</td>
<td>66,9</td>
<td>108,5</td>
<td>66,6</td>
<td>86,8</td>
<td>874,1</td>
</tr>
<tr>
<td>2015</td>
<td>36,2</td>
<td>15,2</td>
<td>123,6</td>
<td>128,4</td>
<td>21,5</td>
<td>22,6</td>
<td>31,2</td>
<td>27,7</td>
<td>26,8</td>
<td>35,3</td>
<td>101,3</td>
<td>2,2</td>
<td>572</td>
</tr>
<tr>
<td>Total general</td>
<td>30,157</td>
<td>51,232</td>
<td>81,871</td>
<td>113,36</td>
<td>103,89</td>
<td>58,221</td>
<td>46,336</td>
<td>44,7</td>
<td>62,932</td>
<td>108,33</td>
<td>102,69</td>
<td>63,404</td>
<td>867,1178571</td>
</tr>
</tbody>
</table>
ESTACIÓN EMMANUEL DALZON

<table>
<thead>
<tr>
<th>AÑO</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Die</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>49.7</td>
<td>85.2</td>
<td>40.8</td>
<td>45.5</td>
<td>68.5</td>
<td>33.1</td>
<td>49.2</td>
<td>51.5</td>
<td>69.9</td>
<td>108.8</td>
<td>180.2</td>
<td>114</td>
<td>896.4</td>
</tr>
<tr>
<td>1989</td>
<td>31.5</td>
<td>68.1</td>
<td>183.3</td>
<td>61.9</td>
<td>71.7</td>
<td>34.2</td>
<td>30.2</td>
<td>42.1</td>
<td>43.1</td>
<td>113.3</td>
<td>94.2</td>
<td>26.6</td>
<td>800.2</td>
</tr>
<tr>
<td>1990</td>
<td>55.7</td>
<td>27.6</td>
<td>14.8</td>
<td>102.9</td>
<td>65.9</td>
<td>7.9</td>
<td>10.2</td>
<td>13.7</td>
<td>18.8</td>
<td>142.9</td>
<td>71.7</td>
<td>157.3</td>
<td>689.4</td>
</tr>
<tr>
<td>1991</td>
<td>44.5</td>
<td>4.2</td>
<td>123.6</td>
<td>115.7</td>
<td>119.1</td>
<td>13.1</td>
<td>23.7</td>
<td>24.7</td>
<td>66.7</td>
<td>29.6</td>
<td>211</td>
<td>110.1</td>
<td>886</td>
</tr>
<tr>
<td>1992</td>
<td>34.5</td>
<td>17.4</td>
<td>38.4</td>
<td>57.9</td>
<td>7.9</td>
<td>6.4</td>
<td>21</td>
<td>89.4</td>
<td>79.7</td>
<td>17.6</td>
<td>190.3</td>
<td>105</td>
<td>665.5</td>
</tr>
<tr>
<td>1993</td>
<td>39</td>
<td>27</td>
<td>109.9</td>
<td>106.9</td>
<td>103.3</td>
<td>6.4</td>
<td>32</td>
<td>7.9</td>
<td>47.8</td>
<td>31.3</td>
<td>201</td>
<td>111.8</td>
<td>824.3</td>
</tr>
<tr>
<td>1994</td>
<td>92.2</td>
<td>112.1</td>
<td>134.2</td>
<td>113.8</td>
<td>100.3</td>
<td>50.9</td>
<td>14.9</td>
<td>31.6</td>
<td>37.4</td>
<td>83.2</td>
<td>154.5</td>
<td>13.8</td>
<td>938.9</td>
</tr>
<tr>
<td>1995</td>
<td>0</td>
<td>53.8</td>
<td>84.9</td>
<td>124.8</td>
<td>89.3</td>
<td>62.9</td>
<td>18.3</td>
<td>95.9</td>
<td>42.5</td>
<td>99.3</td>
<td>75.8</td>
<td>89.2</td>
<td>836.7</td>
</tr>
<tr>
<td>1996</td>
<td>62.5</td>
<td>105.3</td>
<td>136.1</td>
<td>79.5</td>
<td>98.4</td>
<td>35.4</td>
<td>47</td>
<td>70.6</td>
<td>77.5</td>
<td>118.2</td>
<td>48.4</td>
<td>45.2</td>
<td>924.1</td>
</tr>
<tr>
<td>1997</td>
<td>148.8</td>
<td>22.1</td>
<td>51.4</td>
<td>55.4</td>
<td>60</td>
<td>43.6</td>
<td>2.2</td>
<td>2.9</td>
<td>28.8</td>
<td>64.3</td>
<td>54.2</td>
<td>2.5</td>
<td>536.2</td>
</tr>
<tr>
<td>1998</td>
<td>6.4</td>
<td>83.1</td>
<td>71.9</td>
<td>105.9</td>
<td>153</td>
<td>34.4</td>
<td>36.1</td>
<td>88.9</td>
<td>110</td>
<td>153.4</td>
<td>106.3</td>
<td>194.5</td>
<td>1143.9</td>
</tr>
<tr>
<td>1999</td>
<td>64.7</td>
<td>142.6</td>
<td>149.1</td>
<td>54.6</td>
<td>76.8</td>
<td>78.3</td>
<td>14.3</td>
<td>46.7</td>
<td>84.3</td>
<td>161.2</td>
<td>211.2</td>
<td>58.6</td>
<td>1142.4</td>
</tr>
<tr>
<td>2000</td>
<td>107.4</td>
<td>173.4</td>
<td>142.3</td>
<td>38.9</td>
<td>42.7</td>
<td>31.3</td>
<td>78.7</td>
<td>39.3</td>
<td>71.5</td>
<td>113.8</td>
<td>80.8</td>
<td>21.6</td>
<td>941.7</td>
</tr>
<tr>
<td>2001</td>
<td>13.7</td>
<td>27.6</td>
<td>128.9</td>
<td>13.9</td>
<td>64.6</td>
<td>23</td>
<td>30.2</td>
<td>11.4</td>
<td>84</td>
<td>33.4</td>
<td>53</td>
<td>62.3</td>
<td>546</td>
</tr>
<tr>
<td>2002</td>
<td>24.7</td>
<td>53.9</td>
<td>123.2</td>
<td>126.3</td>
<td>108</td>
<td>72.6</td>
<td>23.5</td>
<td>26.3</td>
<td>61.7</td>
<td>84.2</td>
<td>36</td>
<td>87.5</td>
<td>827.9</td>
</tr>
<tr>
<td>2003</td>
<td>10.7</td>
<td>68.3</td>
<td>75</td>
<td>116.3</td>
<td>28</td>
<td>51.9</td>
<td>25.8</td>
<td>32.8</td>
<td>60.6</td>
<td>177.2</td>
<td>194.8</td>
<td>67.2</td>
<td>908.6</td>
</tr>
<tr>
<td>2004</td>
<td>56.3</td>
<td>82.1</td>
<td>95.4</td>
<td>168.4</td>
<td>103.5</td>
<td>39.6</td>
<td>41.6</td>
<td>12.5</td>
<td>63.1</td>
<td>135.4</td>
<td>131.9</td>
<td>39.4</td>
<td>969.2</td>
</tr>
<tr>
<td>2005</td>
<td>10.6</td>
<td>74</td>
<td>34</td>
<td>88.3</td>
<td>190.7</td>
<td>28.8</td>
<td>13.4</td>
<td>35.4</td>
<td>58.3</td>
<td>145.4</td>
<td>53</td>
<td>100.6</td>
<td>832.5</td>
</tr>
<tr>
<td>2006</td>
<td>140.2</td>
<td>26.1</td>
<td>119.9</td>
<td>163.8</td>
<td>143.9</td>
<td>83.2</td>
<td>12</td>
<td>29.2</td>
<td>23.1</td>
<td>101.4</td>
<td>170.5</td>
<td>32.4</td>
<td>1045.7</td>
</tr>
<tr>
<td>2007</td>
<td>20.7</td>
<td>28.4</td>
<td>76.9</td>
<td>128.9</td>
<td>55.2</td>
<td>42.1</td>
<td>25.3</td>
<td>33.5</td>
<td>5.1</td>
<td>230</td>
<td>152.2</td>
<td>171.6</td>
<td>969.9</td>
</tr>
<tr>
<td>2008</td>
<td>25.2</td>
<td>72.4</td>
<td>143.8</td>
<td>127.5</td>
<td>212.8</td>
<td>102</td>
<td>68.4</td>
<td>63.1</td>
<td>40.3</td>
<td>183.3</td>
<td>152.6</td>
<td>78.8</td>
<td>1270.2</td>
</tr>
<tr>
<td>2009</td>
<td>131.7</td>
<td>123.9</td>
<td>76.9</td>
<td>53.5</td>
<td>39.7</td>
<td>51.9</td>
<td>26.8</td>
<td>17.7</td>
<td>10.8</td>
<td>180.5</td>
<td>75.9</td>
<td>45.8</td>
<td>835.1</td>
</tr>
<tr>
<td>2010</td>
<td>31.2</td>
<td>40.4</td>
<td>14.5</td>
<td>168.2</td>
<td>247.4</td>
<td>63.1</td>
<td>134.9</td>
<td>43.5</td>
<td>85.4</td>
<td>223.8</td>
<td>232.4</td>
<td>153.5</td>
<td>1438.3</td>
</tr>
<tr>
<td>2011</td>
<td>117.3</td>
<td>108.7</td>
<td>132.1</td>
<td>248.1</td>
<td>124.7</td>
<td>51.5</td>
<td>43.4</td>
<td>58</td>
<td>60.1</td>
<td>151.7</td>
<td>203.9</td>
<td>221.7</td>
<td>1521.2</td>
</tr>
<tr>
<td>2012</td>
<td>156.1</td>
<td>93.4</td>
<td>117.6</td>
<td>159.1</td>
<td>58.8</td>
<td>28.2</td>
<td>60.5</td>
<td>31.3</td>
<td>17.9</td>
<td>110.9</td>
<td>55.9</td>
<td>58.7</td>
<td>948.4</td>
</tr>
<tr>
<td>2013</td>
<td>1.5</td>
<td>97.7</td>
<td>93.7</td>
<td>151.3</td>
<td>147.1</td>
<td>13.7</td>
<td>28.3</td>
<td>63.9</td>
<td>63.3</td>
<td>80.2</td>
<td>210.2</td>
<td>120.1</td>
<td>1071</td>
</tr>
<tr>
<td>2014</td>
<td>64.5</td>
<td>67.6</td>
<td>122.5</td>
<td>43.3</td>
<td>94.7</td>
<td>34.4</td>
<td>18.3</td>
<td>6.4</td>
<td>30.2</td>
<td>109.2</td>
<td>164.8</td>
<td>123</td>
<td>878.9</td>
</tr>
<tr>
<td>2015</td>
<td>67.4</td>
<td>36.1</td>
<td>126.3</td>
<td>48</td>
<td>20.8</td>
<td>16.5</td>
<td>21.9</td>
<td>9.2</td>
<td>36.1</td>
<td>66.5</td>
<td>78.9</td>
<td>0.3</td>
<td>528</td>
</tr>
</tbody>
</table>

Total general 57,454 | 68,661 | 98,821 | 102,45 | 96,314 | 40,729 | 34,004 | 38,55 | 52,786 | 116,07 | 130,2 | 86,182 | 922,021,4286
Apéndice 5. Hietogramas método bloque alterno.

$T = 3$ años

<table>
<thead>
<tr>
<th>d (min)</th>
<th>i (mm/h)</th>
<th>I ordenada (mm/h)</th>
<th>Lluvia acumulada (mm)</th>
<th>Lluvia neta (mm)</th>
<th>d (min)</th>
<th>Lluvia neta ordenada (mm) 50%</th>
<th>Curva acumulada</th>
<th>Lluvia neta ordenada (mm) 25%</th>
<th>Curva acumulada</th>
<th>Lluvia neta ordenada (mm) 75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
</tr>
<tr>
<td>10</td>
<td>82,10</td>
<td>19,85</td>
<td>13,68</td>
<td>13,68</td>
<td>10</td>
<td>0,41</td>
<td>0,41</td>
<td>2,64</td>
<td>2,64</td>
<td>0,25</td>
</tr>
<tr>
<td>20</td>
<td>61,99</td>
<td>24,10</td>
<td>20,66</td>
<td>6,98</td>
<td>20</td>
<td>0,70</td>
<td>1,12</td>
<td>6,98</td>
<td>9,62</td>
<td>0,32</td>
</tr>
<tr>
<td>30</td>
<td>49,54</td>
<td>30,49</td>
<td>24,77</td>
<td>4,11</td>
<td>30</td>
<td>1,28</td>
<td>2,40</td>
<td>13,68</td>
<td>20,66</td>
<td>0,41</td>
</tr>
<tr>
<td>40</td>
<td>41,12</td>
<td>41,12</td>
<td>27,41</td>
<td>2,64</td>
<td>40</td>
<td>2,64</td>
<td>5,04</td>
<td>4,11</td>
<td>17,79</td>
<td>0,54</td>
</tr>
<tr>
<td>50</td>
<td>35,05</td>
<td>49,54</td>
<td>29,21</td>
<td>1,80</td>
<td>50</td>
<td>4,11</td>
<td>9,15</td>
<td>1,80</td>
<td>5,91</td>
<td>0,70</td>
</tr>
<tr>
<td>60</td>
<td>30,49</td>
<td>82,10</td>
<td>30,49</td>
<td>1,28</td>
<td>60</td>
<td>6,98</td>
<td>22,83</td>
<td>1,28</td>
<td>3,08</td>
<td>0,94</td>
</tr>
<tr>
<td>70</td>
<td>26,94</td>
<td>61,99</td>
<td>31,43</td>
<td>0,94</td>
<td>70</td>
<td>6,98</td>
<td>29,81</td>
<td>0,94</td>
<td>2,22</td>
<td>1,28</td>
</tr>
<tr>
<td>80</td>
<td>24,10</td>
<td>35,05</td>
<td>32,13</td>
<td>0,70</td>
<td>80</td>
<td>1,80</td>
<td>31,61</td>
<td>0,70</td>
<td>1,64</td>
<td>2,64</td>
</tr>
<tr>
<td>90</td>
<td>21,78</td>
<td>26,94</td>
<td>32,67</td>
<td>0,54</td>
<td>90</td>
<td>29,81</td>
<td>32,54</td>
<td>0,54</td>
<td>1,24</td>
<td>6,98</td>
</tr>
<tr>
<td>100</td>
<td>19,85</td>
<td>21,78</td>
<td>33,08</td>
<td>0,41</td>
<td>100</td>
<td>33,08</td>
<td>33,08</td>
<td>0,41</td>
<td>0,95</td>
<td>13,68</td>
</tr>
<tr>
<td>110</td>
<td>18,22</td>
<td>18,22</td>
<td>33,40</td>
<td>0,32</td>
<td>110</td>
<td>33,40</td>
<td>33,40</td>
<td>0,32</td>
<td>0,74</td>
<td>4,11</td>
</tr>
<tr>
<td>120</td>
<td>16,83</td>
<td>16,83</td>
<td>33,65</td>
<td>0,25</td>
<td>120</td>
<td>33,65</td>
<td>33,65</td>
<td>0,25</td>
<td>0,57</td>
<td>1,80</td>
</tr>
</tbody>
</table>

Parámetros

<table>
<thead>
<tr>
<th>$T = 3$ años</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
</tr>
<tr>
<td>c_2</td>
</tr>
<tr>
<td>x_0</td>
</tr>
<tr>
<td>d</td>
</tr>
</tbody>
</table>
T= 5 años

<table>
<thead>
<tr>
<th>d (min)</th>
<th>i (mm/h)</th>
<th>I ordenada (mm/h)</th>
<th>Lluvia acumulada (mm)</th>
<th>Lluvia neta (mm)</th>
<th>d (min)</th>
<th>Lluvia neta ordenada (mm) 50%</th>
<th>Curva acumulada</th>
<th>Lluvia neta ordenada (mm) 25%</th>
<th>Curva acumulada 25%</th>
<th>Lluvia neta ordenada (mm) 75%</th>
<th>Curva acumulada 75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>89,11</td>
<td>21,83</td>
<td>14,85</td>
<td>14,85</td>
<td>10</td>
<td>0,44</td>
<td>0,44</td>
<td>2,95</td>
<td>2,95</td>
<td>0,26</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>67,73</td>
<td>26,52</td>
<td>22,58</td>
<td>7,73</td>
<td>20</td>
<td>0,77</td>
<td>1,21</td>
<td>7,73</td>
<td>10,68</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>54,33</td>
<td>33,55</td>
<td>27,16</td>
<td>4,59</td>
<td>30</td>
<td>1,42</td>
<td>2,63</td>
<td>14,85</td>
<td>22,58</td>
<td>0,44</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>45,18</td>
<td>45,18</td>
<td>30,12</td>
<td>2,95</td>
<td>40</td>
<td>2,95</td>
<td>5,59</td>
<td>4,59</td>
<td>19,44</td>
<td>0,58</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>38,55</td>
<td>54,33</td>
<td>32,13</td>
<td>2,01</td>
<td>50</td>
<td>4,59</td>
<td>10,17</td>
<td>2,01</td>
<td>6,60</td>
<td>0,77</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>33,55</td>
<td>89,11</td>
<td>33,55</td>
<td>1,42</td>
<td>60</td>
<td>14,85</td>
<td>25,03</td>
<td>1,42</td>
<td>3,43</td>
<td>1,04</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>29,65</td>
<td>67,73</td>
<td>34,59</td>
<td>1,04</td>
<td>70</td>
<td>7,73</td>
<td>32,75</td>
<td>1,04</td>
<td>2,46</td>
<td>1,42</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>26,52</td>
<td>38,55</td>
<td>35,36</td>
<td>0,77</td>
<td>80</td>
<td>2,01</td>
<td>34,76</td>
<td>0,77</td>
<td>1,80</td>
<td>2,95</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>23,96</td>
<td>29,65</td>
<td>35,94</td>
<td>0,58</td>
<td>90</td>
<td>1,04</td>
<td>35,80</td>
<td>0,58</td>
<td>1,35</td>
<td>7,73</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>21,83</td>
<td>23,96</td>
<td>36,38</td>
<td>0,44</td>
<td>100</td>
<td>0,58</td>
<td>36,38</td>
<td>0,44</td>
<td>1,02</td>
<td>14,85</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>20,03</td>
<td>20,03</td>
<td>36,72</td>
<td>0,34</td>
<td>110</td>
<td>0,34</td>
<td>36,72</td>
<td>0,34</td>
<td>0,78</td>
<td>4,59</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>18,49</td>
<td>18,49</td>
<td>36,98</td>
<td>0,26</td>
<td>120</td>
<td>0,26</td>
<td>36,98</td>
<td>0,26</td>
<td>0,60</td>
<td>2,01</td>
<td></td>
</tr>
</tbody>
</table>

PARAMETROS

- $c_1 = 5175,75$
- $c_2 = -1,13$
- $x_0 = 26,4$
- $d = 120$

Lluvia neta (mm)

- **Curva acumulada**

Intensidad (mm/hr) vs. duración (min)
T= 10 años

<table>
<thead>
<tr>
<th>d (min)</th>
<th>i (mm/h)</th>
<th>I ordenada (mm/h)</th>
<th>Lluvia acumulada (mm)</th>
<th>Lluvia neta (mm)</th>
<th>d (min)</th>
<th>Lluvia neta ordenada (mm) 50%</th>
<th>Curva acumulada</th>
<th>Lluvia neta ordenada (mm) 25%</th>
<th>Curva acumulada 25%</th>
<th>Lluvia neta ordenada (mm) 75%</th>
<th>Curva acumulada 75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>99,71</td>
<td>24,96</td>
<td>16,62</td>
<td>16,62</td>
<td>10</td>
<td>0,54</td>
<td>0,54</td>
<td>3,44</td>
<td>3,44</td>
<td>0,32</td>
<td>0,32</td>
</tr>
<tr>
<td>20</td>
<td>76,29</td>
<td>30,27</td>
<td>25,43</td>
<td>8,81</td>
<td>20</td>
<td>0,92</td>
<td>1,46</td>
<td>8,81</td>
<td>12,25</td>
<td>0,41</td>
<td>0,41</td>
</tr>
<tr>
<td>30</td>
<td>61,45</td>
<td>38,21</td>
<td>30,72</td>
<td>5,30</td>
<td>30</td>
<td>1,68</td>
<td>3,14</td>
<td>16,62</td>
<td>25,43</td>
<td>0,54</td>
<td>0,54</td>
</tr>
<tr>
<td>40</td>
<td>51,25</td>
<td>51,25</td>
<td>34,17</td>
<td>3,44</td>
<td>40</td>
<td>3,44</td>
<td>6,58</td>
<td>5,30</td>
<td>21,91</td>
<td>0,70</td>
<td>0,70</td>
</tr>
<tr>
<td>50</td>
<td>43,83</td>
<td>61,45</td>
<td>36,53</td>
<td>2,36</td>
<td>50</td>
<td>5,30</td>
<td>11,88</td>
<td>2,36</td>
<td>7,66</td>
<td>0,92</td>
<td>0,92</td>
</tr>
<tr>
<td>60</td>
<td>38,21</td>
<td>99,71</td>
<td>38,21</td>
<td>1,68</td>
<td>60</td>
<td>16,62</td>
<td>28,50</td>
<td>1,68</td>
<td>4,04</td>
<td>1,23</td>
<td>1,23</td>
</tr>
<tr>
<td>70</td>
<td>33,81</td>
<td>76,29</td>
<td>39,44</td>
<td>1,23</td>
<td>70</td>
<td>8,81</td>
<td>37,31</td>
<td>1,23</td>
<td>2,91</td>
<td>1,68</td>
<td>1,68</td>
</tr>
<tr>
<td>80</td>
<td>30,27</td>
<td>43,83</td>
<td>40,36</td>
<td>0,92</td>
<td>80</td>
<td>2,36</td>
<td>39,67</td>
<td>0,92</td>
<td>2,15</td>
<td>3,44</td>
<td>3,44</td>
</tr>
<tr>
<td>90</td>
<td>27,38</td>
<td>33,81</td>
<td>41,06</td>
<td>0,70</td>
<td>90</td>
<td>1,23</td>
<td>40,90</td>
<td>0,70</td>
<td>1,62</td>
<td>8,81</td>
<td>8,81</td>
</tr>
<tr>
<td>100</td>
<td>24,96</td>
<td>27,38</td>
<td>41,60</td>
<td>0,54</td>
<td>100</td>
<td>0,70</td>
<td>41,60</td>
<td>0,54</td>
<td>1,24</td>
<td>16,62</td>
<td>16,62</td>
</tr>
<tr>
<td>110</td>
<td>22,92</td>
<td>22,92</td>
<td>42,01</td>
<td>0,41</td>
<td>110</td>
<td>0,41</td>
<td>42,01</td>
<td>0,41</td>
<td>0,95</td>
<td>5,30</td>
<td>5,30</td>
</tr>
<tr>
<td>120</td>
<td>21,17</td>
<td>21,17</td>
<td>42,34</td>
<td>0,32</td>
<td>120</td>
<td>0,32</td>
<td>42,34</td>
<td>0,32</td>
<td>0,74</td>
<td>2,36</td>
<td>2,36</td>
</tr>
</tbody>
</table>

PARAMETROS T= 10 AÑOS

- $c_1 = 5971,51$
- $c_2 = -1,13$
- $x_0 = 27,4$
- $d = 120$
T=25 años

<table>
<thead>
<tr>
<th>d (min)</th>
<th>i (mm/h)</th>
<th>I ordenada (mm/h)</th>
<th>Lluvia acumulada (mm)</th>
<th>Lluvia neta (mm)</th>
<th>d (min)</th>
<th>Lluvia neta ordenada (mm) 50%</th>
<th>Curva acumulada</th>
<th>Lluvia neta ordenada (mm) 25%</th>
<th>Curva acumulada</th>
<th>Lluvia neta ordenada (mm) 75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>116,12</td>
<td>29,87</td>
<td>19,35</td>
<td>19,35</td>
<td>10</td>
<td>0,69</td>
<td>0,69</td>
<td>4,21</td>
<td>4,21</td>
<td>0,42</td>
</tr>
<tr>
<td>20</td>
<td>89,56</td>
<td>36,15</td>
<td>29,85</td>
<td>10,50</td>
<td>20</td>
<td>1,17</td>
<td>1,86</td>
<td>10,50</td>
<td>14,71</td>
<td>0,54</td>
</tr>
<tr>
<td>30</td>
<td>72,52</td>
<td>45,48</td>
<td>36,26</td>
<td>6,41</td>
<td>30</td>
<td>2,09</td>
<td>3,95</td>
<td>19,35</td>
<td>29,85</td>
<td>0,69</td>
</tr>
<tr>
<td>40</td>
<td>60,71</td>
<td>60,71</td>
<td>40,47</td>
<td>4,21</td>
<td>40</td>
<td>4,21</td>
<td>8,16</td>
<td>6,41</td>
<td>25,76</td>
<td>0,89</td>
</tr>
<tr>
<td>50</td>
<td>52,07</td>
<td>72,52</td>
<td>43,39</td>
<td>2,92</td>
<td>50</td>
<td>6,41</td>
<td>14,57</td>
<td>9,32</td>
<td>9,32</td>
<td>1,17</td>
</tr>
<tr>
<td>60</td>
<td>45,48</td>
<td>116,12</td>
<td>45,48</td>
<td>2,09</td>
<td>60</td>
<td>19,35</td>
<td>33,92</td>
<td>2,09</td>
<td>5,01</td>
<td>1,55</td>
</tr>
<tr>
<td>70</td>
<td>40,31</td>
<td>89,56</td>
<td>47,03</td>
<td>1,55</td>
<td>70</td>
<td>10,50</td>
<td>44,42</td>
<td>1,55</td>
<td>3,64</td>
<td>2,09</td>
</tr>
<tr>
<td>80</td>
<td>36,15</td>
<td>52,07</td>
<td>48,20</td>
<td>1,17</td>
<td>80</td>
<td>2,92</td>
<td>47,34</td>
<td>1,17</td>
<td>2,71</td>
<td>4,21</td>
</tr>
<tr>
<td>90</td>
<td>32,72</td>
<td>40,31</td>
<td>49,09</td>
<td>0,89</td>
<td>90</td>
<td>1,55</td>
<td>48,89</td>
<td>0,89</td>
<td>2,06</td>
<td>10,50</td>
</tr>
<tr>
<td>100</td>
<td>29,87</td>
<td>32,72</td>
<td>49,78</td>
<td>0,69</td>
<td>100</td>
<td>0,89</td>
<td>49,78</td>
<td>0,69</td>
<td>1,58</td>
<td>19,35</td>
</tr>
<tr>
<td>110</td>
<td>27,44</td>
<td>27,44</td>
<td>50,32</td>
<td>0,54</td>
<td>110</td>
<td>0,54</td>
<td>50,32</td>
<td>0,54</td>
<td>1,23</td>
<td>6,41</td>
</tr>
<tr>
<td>120</td>
<td>25,37</td>
<td>25,37</td>
<td>50,74</td>
<td>0,42</td>
<td>120</td>
<td>0,42</td>
<td>50,74</td>
<td>0,42</td>
<td>0,96</td>
<td>2,92</td>
</tr>
</tbody>
</table>

PARAMETROS

<table>
<thead>
<tr>
<th>T= 25 AÑOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
</tr>
<tr>
<td>c2</td>
</tr>
<tr>
<td>x0</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>120</td>
</tr>
</tbody>
</table>
T=100 años

<table>
<thead>
<tr>
<th>d (min)</th>
<th>i (mm/h)</th>
<th>I ordenada (mm/h)</th>
<th>Lluvia acumulada (mm)</th>
<th>Lluvia neta (mm)</th>
<th>d (min)</th>
<th>Lluvia neta ordenada (mm) 50%</th>
<th>Curva acumulada</th>
<th>Lluvia neta ordenada (mm) 25%</th>
<th>Curva acumulada 25%</th>
<th>Lluvia neta ordenada (mm) 75%</th>
<th>Curva acumulada 75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>135,32</td>
<td>35,51</td>
<td>22,55</td>
<td>22,55</td>
<td>10</td>
<td>0,84</td>
<td>0,84</td>
<td>5,10</td>
<td>5,10</td>
<td>0,51</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>105,10</td>
<td>42,94</td>
<td>35,03</td>
<td>12,48</td>
<td>20</td>
<td>1,42</td>
<td>2,27</td>
<td>12,48</td>
<td>17,58</td>
<td>0,66</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>85,47</td>
<td>53,94</td>
<td>42,74</td>
<td>7,70</td>
<td>30</td>
<td>2,55</td>
<td>4,82</td>
<td>22,55</td>
<td>35,03</td>
<td>0,84</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>71,76</td>
<td>71,76</td>
<td>47,84</td>
<td>5,10</td>
<td>40</td>
<td>5,10</td>
<td>9,92</td>
<td>30,26</td>
<td>1,09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>61,66</td>
<td>85,47</td>
<td>51,39</td>
<td>3,55</td>
<td>50</td>
<td>7,70</td>
<td>17,63</td>
<td>3,55</td>
<td>11,25</td>
<td>1,42</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>53,94</td>
<td>135,32</td>
<td>53,94</td>
<td>2,55</td>
<td>60</td>
<td>22,55</td>
<td>40,18</td>
<td>2,55</td>
<td>6,10</td>
<td>1,89</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>47,85</td>
<td>105,10</td>
<td>55,83</td>
<td>1,89</td>
<td>70</td>
<td>12,48</td>
<td>52,66</td>
<td>1,89</td>
<td>4,44</td>
<td>2,55</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>42,94</td>
<td>61,66</td>
<td>57,25</td>
<td>1,42</td>
<td>80</td>
<td>3,55</td>
<td>56,21</td>
<td>1,42</td>
<td>3,31</td>
<td>5,10</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>38,89</td>
<td>47,85</td>
<td>58,34</td>
<td>1,09</td>
<td>90</td>
<td>1,89</td>
<td>58,10</td>
<td>1,09</td>
<td>2,51</td>
<td>12,48</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>35,51</td>
<td>38,89</td>
<td>59,18</td>
<td>0,84</td>
<td>100</td>
<td>1,09</td>
<td>59,18</td>
<td>0,84</td>
<td>1,93</td>
<td>22,55</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>32,64</td>
<td>32,64</td>
<td>59,84</td>
<td>0,66</td>
<td>110</td>
<td>0,66</td>
<td>59,84</td>
<td>0,66</td>
<td>1,50</td>
<td>7,70</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>30,18</td>
<td>30,18</td>
<td>60,35</td>
<td>0,51</td>
<td>120</td>
<td>0,51</td>
<td>60,35</td>
<td>0,51</td>
<td>1,17</td>
<td>3,55</td>
<td></td>
</tr>
</tbody>
</table>

PARAMETROS

- **T= 100 AÑOS**
- c1: 9149,46
- c2: -1,14
- x0: 30,3
- d: 120

Lluvia neta (mm)

![Lluvia neta (mm)](image1)

Lluvia neta ordenada (mm)

![Lluvia neta ordenada (mm)](image2)

Curva acumulada

![Curva acumulada](image3)

Intensidad (mm/hr)

![Intensidad (mm/hr)](image4)

duración (min)

![duración (min)](image5)
APÉNDICE 6. MAPA DE COBERTURA ESCENARIO 1.
APÉNDICE 7. MAPA DE COBERTURA ESCENARIO 2.

22 de Mayo de 2017
Universidad Católica de Colombia.
Especialización en Recursos Hídricos
APÉNDICE 8. MAPA DE COBERTURA ESCENARIO 3.

![Mapa de cobertura escenario 3](image_url)
APÉNDICE 10. MAPA DE COBERTURA ESCENARIO 5.
APÉNDICE 11. MAPA DE ASOCIACIONES DE SUELOS.
APÉNDICE 12. MAPA DE PENDIENTES.
APÉNDICE 13. MAPA DE NUMERO DE CURVA ESCENARIO 1.

Conveniones
Curva Numero

<table>
<thead>
<tr>
<th>Código</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>Lila</td>
</tr>
<tr>
<td>3.0</td>
<td>Azul</td>
</tr>
<tr>
<td>3.4</td>
<td>Azul</td>
</tr>
<tr>
<td>4.3</td>
<td>Azul</td>
</tr>
<tr>
<td>5.1</td>
<td>Azul</td>
</tr>
</tbody>
</table>

Cuerpos Agua

Subcuenca canal salitre

<table>
<thead>
<tr>
<th>E</th>
<th>0</th>
<th>0.75</th>
<th>1.5</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EKm</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>

Universidad Católica de Colombia.
Especialización en Recursos Hídricos

Título del proyecto:
DETERMINACIÓN DEL IMPACTO DEL PROCESO URBANIZADOR SOBRE LA RESPUESTA HIDROLÓGICA DE LA SUBCUENCA DEL CANAL SALITRE MEDIANTE EL MÉTODO DE CURVA NÚMERO.

Nombres:
Jenny Carolina Giraga Gonzalez Céd 560347
Ronald Eudardo Cafa Anado Céd 560336

Profesor: Carlos Daniel Montes. Ingeniero Civil MaC

22 de Mayo de 2017

Mapa de Curva Numero Escenario No 1
05 de 13

1:75,000
APÉNDICE 14. MAPA DE NUMERO DE CURVA ESCENARIO 2.
APÉNDICE 15. MAPA DE NUMERO DE CURVA ESCENARIO 3.
APÉNDICE 17. MAPA DE NUMERO DE CURVA ESCENARIO 5.
APÉNDICE 18. HIDROGRAMAS DE ESCORRENTÍA.

T 3 AÑOS
T 25 AÑOS

E1 E2 E3 E4 E5
T 100 AÑOS

E1
E2
E3
E4
E5
Series6
Series4
Series1