PROYECTO DE TRABAJO DE GRADO

PROPUESTA DE ADECUACION DE LA PISTA DE ATERRIZAJE Y MEJORA DE LOS SERVICIOS DEL AEROPUERTO DE MEDINA EN CUNDINAMARCA

CESAR AUGUSTO CASTRO MELO
NICOLAS AHUMADA BERMEO

UNIVERSIDAD CATÓLICA DE COLOMBIA
FACULTAD DE INGENIERÍA
PROGRAMA DE ESPECIALIZACIÓN EN GERENCIA DE OBRA
BOGOTÁ D.C.
NOVIEMBRE 2018
<table>
<thead>
<tr>
<th>Sección</th>
<th>Págs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCCIÓN</td>
<td>8</td>
</tr>
<tr>
<td>1. GENERALIDADES</td>
<td>10</td>
</tr>
<tr>
<td>1.1. LÍNEA DE INVESTIGACIÓN</td>
<td>10</td>
</tr>
<tr>
<td>1.2. PLANTEAMIENTO DEL PROBLEMA</td>
<td>10</td>
</tr>
<tr>
<td>1.2.1. Antecedentes del problema.</td>
<td>10</td>
</tr>
<tr>
<td>1.2.2. Pregunta de investigación.</td>
<td>13</td>
</tr>
<tr>
<td>1.2.3. Variables del problema.</td>
<td>14</td>
</tr>
<tr>
<td>1.3. JUSTIFICACIÓN</td>
<td>14</td>
</tr>
<tr>
<td>1.4. OBJETIVOS</td>
<td>16</td>
</tr>
<tr>
<td>1.4.1. Objetivo general</td>
<td>16</td>
</tr>
<tr>
<td>1.4.2. Objetivos específicos</td>
<td>16</td>
</tr>
<tr>
<td>1.5. CRONOGRAMA</td>
<td>41</td>
</tr>
<tr>
<td>1.6. PRESUPUESTO</td>
<td>41</td>
</tr>
<tr>
<td>2. MARCOS DE REFERENCIA</td>
<td>17</td>
</tr>
<tr>
<td>2.1.1. Servicios en aeropuertos</td>
<td>17</td>
</tr>
<tr>
<td>2.1.1.1. Servicios aeronáuticos</td>
<td>17</td>
</tr>
<tr>
<td>2.1.1.2. Servicios No aeronáuticos.</td>
<td>18</td>
</tr>
</tbody>
</table>
2.1.1.3. Servicios aeroportuarios .. 18
2.1.1.4. Servicios a la aviación. .. 18
2.1.1.5. Servicios de facilitación. ... 19
2.1.1.6. Servicios operacionales. .. 19
2.1.1.7. Servicios aéreos comerciales. .. 20
2.1.1.8. Servicios comerciales. .. 20
2.2.1. Servicio .. 21

2.1.2. Pavimento en pistas de aeropuertos .. 22
2.1.2.1. Cargas que soportan los pavimentos. ... 22
2.1.2.2. Tipos de pavimentos ... 23
2.1.2.3. Materiales de los pavimentos. ... 23
2.1.2.4. Daños que sufren las mezclas asfálticas. ... 24

2.1.3. Evaluación de pavimentos. .. 26
2.1.3.1. Índice Internacional de Rigurosidad (IRI)... 26
2.1.3.2. Coeficiente de Fricción (CF). ... 28
2.1.3.3. Evaluación estructural. ... 30

2.2.1. Mantenimiento de pistas de aterrizaje ... 30

2.3.1. Leyes y Decretos. ... 32
2.3.2. Normatividad en aeropuertos ... 33

2.5.1. Diseño del Pavimento de la Pista del Aeropuerto El Edén de Armenia Departamento de Quindío por los métodos racionales. .. 36
2.5.2. Análisis del sistema de reparación de pavimentos flexibles por inyección neumática de mezclas asfálticas en frio, tecnología velocity patching. 37
2.5.3. Supervisión y control de la obra rodaje golfo 2da etapa y obras complementarias (pavimento) aeropuerto internacional Benito Juarez, Ciudad de México.. 38

2.5.4. Diseño de pavimentos para aeropistas. Este estudio se analizó para estudiar todo lo relacionado con el tema del diseño de pavimentos en aeropuertos....... 39

3. METODOLOGÍA .. 41

3.1. TIPO DE INVESTIGACIÓN .. 47

3.2. MÉTODO DE ESTUDIO ... 47

3.3. FASES DEL TRABAJO DE GRADO .. 48

3.4. INSTRUMENTOS ... 48

3.5. POBLACIÓN Y MUESTRA .. 48

3.6. ALCANCES Y LIMITACIONES .. 49

4. RESULTADOS .. ¡Error! Marcador no definido.

4.1. OBJETIVO ESPECÍFICO 1 ... 49

4.2. OBJETIVO ESPECÍFICO 2 ... 55

4.3. OBJETIVO ESPECÍFICO 3 ... 76

5. ANÁLISIS DE RESULTADOS E IMPACTOS¡Error! Marcador no definido.

5.1. CÓMO SE RESPONDE A LA PREGUNTA DE INVESTIGACIÓN CON LOS RESULTADOS

5.2. APORTE DE LOS RESULTADOS A LA GERENCIA DE OBRAS

5.3. ESTRATEGIAS DE COMUNICACIÓN Y DIVULGACIÓN

6. CONCLUSIONES .. 113
La presente obra está bajo una licencia:
Atribución-NoComercial 2.5 Colombia (CC BY-NC 2.5)
Para leer el texto completo de la licencia, visita:
http://creativecommons.org/licenses/by-nc/2.5/co/

Usted es libre de:
Compartir - copiar, distribuir, ejecutar y comunicar públicamente la obra
hacer obras derivadas

Bajo las condiciones siguientes:
Atribución — Debe reconocer los créditos de la obra de la manera especificada por el autor o el licenciatario (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).

No Comercial — No puede utilizar esta obra para fines comerciales.
LISTA DE FIGURAS

Figura 1. Índice Internacional de Rugosidad. ... 27
Figura 2. Recomendaciones del TRB para la selección de valores máximos admisibles de IRI en función del TDPA. ... 27
Figura 3. Péndulo de fricción del TRRL ... 29
Figura 4. Mapa de aeropuertos en Colombia .. 34
Figura 5. Mapa del municipio de Medina ... 36
LISTA DE TABLAS

Tabla 1. Presupuesto global de la propuesta por fuentes de financiación (en miles de $).

Tabla 2. Descripción de los gastos de personal (en miles de $).

Tabla 3. Descripción de los equipos que se planea adquirir (en miles de $).

Tabla 4. Descripción y cuantificación de los equipos de uso propio (en miles de $)

Tabla 5. Descripción del software que se planea adquirir (en miles de $).

Tabla 6. Descripción y justificación de los viajes (en miles de $).

Tabla 7. Valoración de las salidas de campo (en miles de $).

Tabla 8. Materiales y suministros (en miles de $).

Tabla 9. Bibliografía (en miles de $).
INTRODUCCIÓN

El servicio aéreo es un servicio público en Colombia según lo establece la Ley 105 de 1993 [1], la cual establece todos los parámetros para su funcionamiento a través del estado, para el desarrollo y control del servicio, el organismo encargado es la Aeronáutica Civil perteneciente al ministerio de transporte y la superintendencia de transporte. Para que se puedan desarrollar las actividades aéreas son necesarios diferentes elementos, como son el espacio aéreo, las aeronaves, la infraestructura y los servicios que el terminal aéreo preste a los usuarios. Siendo la infraestructura un componente muy esencial e imprescindible para la correcta operatividad de naves en tierra y con un fuerte significado en la actividad constructiva de los ingenieros civiles.

Actualmente el aeropuerto ubicado en el Municipio de Medina en Cundinamarca no se encuentra en funcionamiento, pues fue cerrado por la Aeronáutica Civil\(^1\) en el 2017, debido a que su pista “no estaban en condiciones de operación”, es decir no cumplía con la normatividad actual [2], que exige el Gobierno de Colombia, en manos de la Aeronáutica Civil. Esto también sucedió en otros muchos aeropuertos que fueron cerrados.

Por tal motivo, el presente trabajo, propone un plan de mejora de la infraestructura del aeropuerto de Medina en Cundinamarca, que permita una mejoría de su pista de los servicios lado aire aterrizaje, y de los servicios que se prestaban en general; dentro de los resultados se obtiene, un diagnóstico de la situación actual del aeropuerto de Medina.

\(^{1}\) La Unidad Administrativa Especial de Aeronáutica Civil o Aerocivil es el organismo estatal colombiano encargado del control y regulación de la aviación civil en Colombia.
en Cundinamarca, y se diagnosticaron las fallas en la infraestructura, y el estado de sus pistas actuales; e identifica los servicios que se prestaban aeropuerto de Medina en Cundinamarca y su nivel de calidad; para finalmente diseñar el plan de mejoramiento de la infraestructura, servicios y pista del aeropuerto de Medina en Cundinamarca.
También se realiza un balance entre el aspecto socioeconómico y el competitivo de la provincia de Medina que a su vez será insumo para determinar las acciones que permitan aprovechar el potencial del aeropuerto y crear entornos atractivos para el desarrollo de la región.

De esta forma se ayudará no solo a mejorar el aeropuerto objeto de estudio del presente trabajo, sino también la posible implementación en otros aeropuertos, para aportar al mejoramiento de la infraestructura aeroportuaria en el país, lo cual resulta vital en las zonas apartadas, logrando así tener conectividad con el centro del país, impulsando el turismo y el desarrollo a nivel regional y nacional.
1. GENERALIDADES

1.1. LÍNEA DE INVESTIGACIÓN

La línea de investigación del presente trabajo será la de Gestión y tecnología para la sustentabilidad de las comunidades. Se planteó esta línea de investigación, para poder investigar en primera lugar todo lo relacionado con el tema del presente trabajo, como finalidad dar una solución a un problema particular planteado, en el medio profesional-disciplinar, y por lo tanto enfocándose a la solución del problema encontrado relacionado con las pistas de aterrizaje en el aeropuerto de Medina en Cundinamarca.

1.2. PLANTEAMIENTO DEL PROBLEMA

1.2.1. Antecedentes del problema. El problema con el aeropuerto de Medina en Cundinamarca es que fue cerrado o suspendido por parte de la Aeronáutica Civil, entidad reguladora y controladora de los aeropuertos en Colombia. Esta situación se presentó desde el año 2007 y hasta ahora continua sin operar.

Cuando la Aeronáutica Civil en Colombia suspende la operación de un aeródromo, lo hace por argumentos válidos y que ameritan dicho cierre de forma inmediata, tal es el

2 Línea de investigación con alcance profesional-disciplinar, esta se da cuando una investigación se realiza para la adquisición de nuevos conocimientos, dirigiéndose hacia un objetivo o fin práctico, resolución de un problema, que responda a una demanda específica. Con esta investigación se crean modelos, procesos, diseños, prototipos, y en general, nuevas formas de acceder u organizar conocimiento alrededor de la solución de un problema planteado en el medio profesional y con incidencia en la formación profesional o en el medio laboral.
caso del aeropuerto de Medina, pues su pista y el aeropuerto en general, “no estaba en condiciones de operación” [2], debido a que no cumplía con toda normatividad que actualmente exige la Aeronáutica Civil y que exigen las leyes y decretos del Gobierno de Colombia.

La Unidad Administrativa Especial de Aeronáutica Civil (UAEAC), está encargada de realizar inspecciones de carácter técnico desde el momento en que se inicia la construcción de un aeródromo, aeropuerto o terminal aéreo en Colombia, así lo establecen los Reglamentos Aeronáuticos en Colombia (RAC) para aeródromos, aeropuertos o helipuertos. Esto con el propósito de “determinar su apego a la norma, la viabilidad del permiso de construcción y el cumplimiento de las condiciones del permiso de operación”. [3, pp. 18-19]

Incluso la UAEAC de acuerdo a la RAC, se menciona que: “podrá en cualquier tiempo controlar las obras o trabajos que se adelanten o desarrollen en los aeródromos, aeropuertos o helipuertos e instalaciones, relacionadas con la operación aérea y suspender las que no se ciñan a los planos o proyectos aprobados, en el permiso de construcción”,

Lo cual es una acción que permite generar control de calidad desde la construcción de los aeródromos en Colombia. Sin embargo, con el paso de los años, puede que dicha construcción, en este caso de las pistas, sufra desgastes por su utilización, y se debiliten; situación que debe ser atendida a tiempo con el mantenimiento respectivo de las pistas, haciendo los cambios, adecuaciones, reparaciones y sustituciones necesarias para continuar garantizando en primer lugar la calidad de las pitas y de esta forma la seguridad de los pasajeros y trabajadores del aeródromo.
Al parecer esta situación o acción de mantenimiento no se realizó de forma constante en el aeropuerto de Medina en Cundinamarca, por lo cual la calidad de sus pistas y de los demás servicios que se prestan en un aeropuerto de operación nacional no fue la misma con el paso de los años; motivo por el cual la UAEAC pudo determinar la suspensión y cierre de sus instalaciones. El motivo real y preciso del cierre o suspensión del aeropuerto de Medina, se determinará, y se expondrán las posibles soluciones durante la realización del presente trabajo.

Pues sobre la suspensión de operación, en los documentos normativos, la UAEAC menciona que “El permiso de operación (de un aeródromo) podrá ser modificado o suspendido cuando el aeródromo deje de reunir los requisitos exigidos para garantizar la seguridad de las operaciones aéreas, por violación de las normas reglamentarias o por modificaciones en su operación”. [3, p. 19]

Y en cuanto a la cancelación de los permisos de operación de los aeródromos, la UAEAC, es clara cuando dice que, dependiendo de la situación, se menciona la siguiente frase:

“La UAEAC suspenderá o cancelará el permiso de operación de un aeródromo, en los siguientes casos: a. Cuando con su utilización se atente contra la seguridad del estado. b. Cuando se abuse o trate de establecer en ellos monopolios de cualquier índole. c. Cuando el propietario solicite la cancelación de los registros, para dedicar las áreas del aeródromo o pista a otros servicios distintos de la operación aérea. d. Cuando no se observen las normas técnicas y de seguridad operacional y de la aviación para la correcta operación, contenidas en los Reglamentos Aeronáuticos de Colombia o su administración no reúna los requisitos exigidos para el normal
funcionamiento. e. Cuando no se haya observado los requisitos correspondientes al Registro de Aeródromos. f. A solicitud del explotador. g. Cuando el propietario poseedor o tenedor del predio donde está ubicado el aeródromo, transfiera el dominio, posesión o tenencia del mismo. h. Los casos de violación de leyes, reglamentos o disposiciones expedidas por entidades competentes, tales como Ministerio de Protección Social, Instituto Colombiano Agropecuario "ICA", Autoridades Ambientales, Militares, de Salud y Organismos de control del Estado o una decisión judicial". [3, p. 19]

La UAEAC, también podrá determinar cuándo se debe realizar el “levantamiento de la suspensión” de operación del aeródromo, pues menciona que, “la solicitud de levantamiento del permiso podrá presentarse cuando se demuestre que ha desaparecido la causal que dio origen a la suspensión del mismo….,” [3, p. 19]

Es decir que tanto el aeropuerto de Medina como otros aeropuertos donde la UAEAC haya suspendido o cancelado su operación, podrán realizar los cambios, ajustes, reparaciones o modificaciones necesarias y solicitar el “levantamiento de la suspensión” a la Aeronáutica Civil para poder volver a prestar sus servicios.

Lo anterior demuestra no solo la oportunidad para cada aeropuerto que haya sido cerrado sino la necesidad de realizar estudios como el que se propone en el presente trabajo.

1.2.2. Pregunta de investigación.

Con el fin de ayudar a mejorar la actual infraestructura del aeropuerto de Medina en Cundinamarca, se plantea la siguiente pregunta:
¿Cómo mejorar la pista de aterrizaje, y los servicios que se prestaban en el terminal aéreo de Medina para que pueda volver a operar?

1.2.3. Variables del problema. Las siguientes variables, permitirán evaluar el problema como tal para determinar y proponer las posibles soluciones al problema hallado:

- Cumplimiento de la normatividad establecida por la Aeronáutica Civil en Colombia.
- Calidad Infraestructura del aeropuerto.
- Estado de la pista del aeropuerto.
- Calidad de los servicios prestados en el aeropuerto.
- Cumplimiento de los estándares de calidad nacional e internacional.

1.3. JUSTIFICACIÓN

Lo mencionado anteriormente demuestra que en cuanto a la elección de la temática, el presente trabajo se justifica por la necesidad de generar una solución al problema encontrado con respecto al actual estado del aeropuerto de Medina en Cundinamarca, cuya pista y demás servicios no se encuentran en el estado necesario para operar, pues fue cerrado o suspendido por la Aeronáutica Civil en Colombia, motivo que se evaluará, determinara y expondrá durante el desarrollo del presente trabajo no solo la oportunidad para cada aeropuerto que haya sido cerrado sino la necesidad de realizar estudios como el que se propone en el presente trabajo.

Al ser investigado se profundiza el tema propuesto, y a las posibles soluciones generando opciones para poder ayudar a dar respuesta al interrogante planteado con
respecto al problema encontrado. Pues los aeropuertos cuentan con la infraestructura necesaria para que se pueda realizar el transporte aéreo por medio de la Aviación en Colombia, ofreciendo opciones de transporte de pasajeros y de carga, por lo que la operación de los aeropuertos debe ser continua y de calidad tanto en las pistas como en cada uno de los servicios que allí se prestan.

Desde el punto de vista de la problemática académica, el presente trabajo se justifica al ser una herramienta de aprendizaje tanto para los estudiantes del programa de Ingeniería como para los profesionales que requieran de soluciones para los problemas como el hallado y similares.

Pues actualmente los aeropuertos no solo permiten el transporte aéreo sino también un medio de comunicación envío de materia prima que se convierte en productos y facilitan o hacen parte de la cadena productiva de una comunidad, región y país. Siendo el medio más rápido, seguro y económico de unir a personas, brindar servicios y facilitando el transporte de materia prima, productos y mercancías entre empresas de cualquier parte de mundo, lo cual es también un factor clave para el desarrollo de una nación ya que promueve actividades productivas de los diferentes sectores de la economía del país. De allí nace la necesidad de crear y mantener en operación los diferentes terminales aéreos del país, que, aunque resulte compleja, debe garantizase por calidad de sus servicios, pistas y materiales que se hayan utilizado para su construcción, así como por el constante mantenimiento de cada uno de las áreas y componentes que hacen parte de cada aeropuerto.

Desde de punto de vista de oportunidad, el actual cierre o suspensión de las operaciones de un aeropuerto como lo es de Medina en Cundinamarca, ofrecer la
posibilidad de investigar los motivos por los cuales se realizó dicho cierre, así como
determinar el estado actual del terminar aéreo y así mismo, analizar dicha información
con el propósito de ofrecer las posibles soluciones a los problemas encontrados en el
aeropuerto. De nuevo para poder generar una herramienta, pero en este caso para el
aeropuerto como tal y la comunidad de Medina, quienes se beneficiarán al reabrir o volver
a operar dicho aeródromo si así lo deciden hacer.

1.4. OBJETIVOS

1.4.1. Objetivo general

Proponer un plan de mejora de la infraestructura del aeropuerto de Medina en
Cundinamarca, que permita la recuperacion de su pista de aterrizaje y los servicios que
se prestaban.

1.4.2. Objetivos específicos

- Identificar los aspectos socioeconómicos de la Provincia de Medina Cundinamarca
 para la viabilidad económica del aeropuerto.
- Realizar un diagnóstico de la situación actual del aeropuerto de Medina en
 Cundinamarca.
- Identificar las fallas en la infraestructura, los servicios que se prestaban y su nivel de
calidad.
Diseñar una mejora de la infraestructura, servicios y pistas del aeropuerto de Medina en Cundinamarca.

2. MARCOS DE REFERENCIA

2.1. MARCO CONCEPTUAL

2.1.1. Servicios en aeropuertos. En Colombia actualmente la Aeronáutica Civil, menciona los diferentes servicios que se prestan en las terminales aéreas no concesionadas, que sirve como guía a los aeropuertos no operados con la Aerocivil y al presente trabajo para evaluar y determinar los servicios mínimos que se debe ofrecer a los pasajeros, operaros, pilotos y demás personal que trabaje en dichas terminales.

A nivel general los siguientes son los servicios que se prestan en un aeropuerto se describen a continuación [4].

2.1.1.1. Servicios aeronáuticos. Estos servicios son ofrecidos por terceros ya sea directa o indirectamente, para asistir en plataformas a las aeronaves, el equipaje, carga, terminal y pasajeros, correos, limpieza y servicios de la misma aeronave, así como para el abastecimiento de combustibles, hangares, talleres, depósitos, garajes y otros locales de estacionamiento técnico.
2.1.1.2. **Servicios No aeronáuticos.** Estos servicios se ofrecen de forma directa o indirectamente a través de terceros, en el terminal de pasajeros y en sus áreas no aeronáuticas cercanas. Dentro de las que se encuentran las áreas destinadas a servicios de Migración, Aduanas, Policía, seguridad, controles zoosanitarios y fitosanitarios.

2.1.1.3. **Servicios aeroportuarios.** Estos servicios los presta la Aeronáutica Civil, directamente o por concesión, los cuales permiten que aterricen y despeguen los aviones, helicópteros y demás aeronaves. También al pasajero para facilitar su paso y control de sus mercancías, el correo, carga, servicio de salvamento o extinción de incendios, seguridad aeroportuaria y sanidad aeroportuaria.

2.1.1.4. **Servicios a la aviación.** Estos servicios, son las habilitaciones que hay en los aeropuertos, de acuerdo a lo expresado en las regulaciones aeronáuticas pertinentes, y que permiten una adecuada atención para la facilidad de la gestión de aviación, tales como:

- Servicios de rampa.
- Suministro de combustible.
- Mantenimiento de línea.
- Asistencia en tierra (Handling).
- Suministro de alimentos (Catering).
- Terminales de almacenamiento y de Carga.
- Equipos de apoyo terrestre en Plataforma.
- Operadores de Base Fija (FBO).
• Servicio de seguridad de la aeronave.
• Chequeo de pasajeros.
• Aseo y otros.

2.1.1.5. **Servicios de facilitación.** Estos servicios los presta el Estado en aeropuertos internacionales, con el fin de simplificar y agilizar los trámites relativos al ingreso, tránsito y salida de pasajeros, tripulación, aeronaves, carga, correo y suministros. Dichos servicios adoptan medidas tendientes a minimizar los tiempos de espera y disminuir los retrasos innecesarios, con el fin de fortalecer la eficacia, celeridad y continuidad del servicio de navegación de las aeronaves. Involucra autoridades como:

• Migración.
• Aduana.
• Control Zoo-fitó-sanitario.
• Policía.
• Sanidad aeroportuaria.

2.1.1.6. **Servicios operacionales.** Estos son servicios aplicados a los sistemas de información de vuelos por medio de:

• Monitores de video.
• Información FIDS (llegada y salida de vuelos).
• Información BIDS (entrega de Equipajes).
• De internet, sonido, teléfono y radio.
2.1.1.7. **Servicios aéreos comerciales.** Estos hacen parte de la actividad realizada mediante remuneración por empresas de transporte público o de trabajos aéreos especiales, previo permiso de la autoridad aeronáutica.

2.1.1.8. **Servicios comerciales.** Estos, son los complementarios que se ofrecen en los aeropuertos para satisfacer necesidades de adquisición de bienes o servicios, como son los siguientes:

- **Servicios obligatorios comerciales:** Módulos de atención a los pasajeros, apoyo a empresas aéreas, alimentos y bebidas, telecomunicaciones, parqueaderos para vehículos, almacén venta libre de impuestos (aeropuertos internacionales), servicios de taxi, servicios de transporte público, accesos para personas con discapacidad, y otros.
- **Servicios comerciales opcionales:** Bancos, cajeros, cambios de moneda, áreas de uso comercial publicitarias, propaganda, locales comerciales, oficinas, hangares, asistencia especial y prioritaria, información turística, agencia de viajes, agencia de seguros, seguros de viajes, guarda equipajes, servicio de protección de equipajes, entre otros.

La descripción de los servicios mencionados, es de vital importancia para la realización del presente trabajo, debido a que ayudará a conocer cuáles de estos servicios se prestaban en el terminal aéreo en Medina, y así poder conocer la calidad de los mismos.
2.2. MARCO TEÓRICO

A continuación se mencionan algunas definiciones claves a tener en cuenta en el trabajo siendo el mayor énfasis en los pavimentos.

2.2.1. Servicio. Un servicio o conjunto de servicios, es la acción o acciones que se realizan para servir a algo o a alguien, a una causa o con un propósito. Son también las funciones realizadas por unas personas hacia otras y que busca la satisfacción de recibirlos. [5]

Se debe prestar, ofrecer o realizar un servicio con la mejor calidad, para garantizar la satisfacción de los usuarios, que para el presente trabajo son los pasajeros, pilotos, operarios y cada uno de los trabajadores que permanecen a diario en las terminales aéreas. [6]

En cuanto a los servicios prestados en los aeropuertos están como se mencionó anteriormente, los servicios aeroportuarios, los cuales permiten el aterrizaje de las aeronaves en los terminales aéreos, dicho servicio incluye el ofrecer pistas con sus pavimentos en perfecto estado y que cumplan con las normas establecidas para su óptimo funcionamiento; garantizando de esta forma la seguridad de los todos los que allí se encuentran.

De acuerdo a la Aeronáutica Civil, en Colombia los aeropuertos están conformados por las siguientes estructuras físicas: Pistas, Calles de rodaje, Zonas de seguridad, Plataforma, Zona de parqueo aeronaves, Vías de servicio, Área de procesamiento y distribución de carga, Torre de control, Terminal de pasajeros, Muelles de abordaje, Salas de espera, Áreas complementarias, Zonas de comercio libres de impuesto, Zona comercial (Civil, 2018). Tal y como se puede observar las pistas para el caso del
presente trabajo son la principal estructura física que conforma el aeropuerto, debido a su importancia.

2.1.2. Pavimento en pistas de aeropuertos. Esta estructura que se encuentra a nivel del suelo, es importante debido a que cada uno de sus materiales deberá contar con la mejor calidad, ya que debe a su vez soportar la presión que ejercen las aeronaves en el momento del aterrizaje. Así mismo deberá permitir el tránsito y operación de medios auxiliares, pero también resistir el continuo desgaste por el uso el clima y agentes externos. (Bosch & Latas, 2002)

Sobre el pavimento Reyes y Rondón (2015), mencionan que es “una estructura formada por una o varias capas de materiales, convenientemente colocados por capas o tongadas sobre el terreno, previamente acondicionado.”

Los pavimentos para carreteras y vías urbanas, son estructuras viales conformadas por múltiples capas, relativamente horizontales construidas con materiales seleccionados. Están diseñados para que su estructura soporte las cargas impuestas por el tránsito y condiciones ambientales, la cual es su función estructural.

Son diseñadas para ofrecer un paso cómodo, seguro y confortable para los automotores o aeronaves que se impongan sobre la superficie en un periodo de tiempo determinado, esto corresponde a su objeto funcional. [7]

2.1.2.1. Cargas que soportan los pavimentos. En cuanto las cargas que soportan los pavimentos tanto de carreteras como en pistas de aterrizaje, se tiene que son producidas por los vehículos y aeronaves que las transitan, y generan esfuerzos
cíclicos, deformaciones verticales, horizontales y de corte. Los pavimentos tanto de concreto como de asfalto, están soportados sobre una superficie natural o plataforma que puede ser; subrasante natural mejorada, estabilizada o terraplén, denominada capa de formación. (Macias & Otros, 2018)

2.1.2.2. Tipos de pavimentos. Actualmente se construyen diferentes tipos de pavimentos, entre los cuales se encuentran los pavimentos flexibles; con capas asfálticas gruesas; con capas tratadas; con estructuras mixtas; con estructuras inversas; pavimentos rígidos; o semirrígidos.

Al respecto, la Asociación colombiana de productores de pavimentadores asfálticos en Colombia, (2004) afirma que la mayoría de las estructuras diseñadas y construidas en Colombia y en el mundo son flexibles o cuentan con rodaduras o superficies elaboradas con capas de asfalto. (Reyes & Rondón, 2015)

2.1.2.3. Materiales de los pavimentos. Sobre los productos asfálticos que se emplean en pavimentos, se halló que provienen de la destilación del petróleo, tanto natural o industrial. De acuerdo a Moreno, y otros, (2018), estos materiales unen el material pétreo para formar la mezcla asfáltica y de esta manera conformar la mezcla asfáltica, también hacen que se esta sea resistente a la carga que recibe, brindando impermeabilidad y durabilidad.

Dentro de los asfaltos que se emplean para la fabricación de mezclas se encuentran los siguientes; cemento asfáltico, emulsiones asfálticas, asfaltos rebajados, asfaltos
modificados y multigrados, asfaltos espumados, crudos pesados, y asfaltitas o asfaltos naturales. (Rondón & Reyes, 2011)

La normatividad para la fabricación tanto del asfalto como la construcción de pavimentos, así como pruebas de diferentes índole como resistencia, impermeabilidad, durabilidad, entre otras, actualmente está determinada en Colombia por el Invías.

2.1.2.4. Daños que sufren las mezclas asfálticas. Los principales daños que sufre el asfalto son: el ahuellamiento, los agrietamiento por fatiga, daños por humedad, y envejecimiento del asfalto.

➢ El ahuellamiento de mezclas asfálticas, es uno de los principales daños que sufre el asfalto, esto se presenta cuando se da evidencia una deformación vertical permanente que acumula el pavimento, ocasionado por el paso de los vehículos o aeronaves, generando una formación de delgadas depresiones longitudinales a largo de la trayectoria de las llantas. Se pueden presentar fallas estructurales o funcionales en el pavimento en cualquier capa de la estructura.

➢ Los agrietamientos por fatiga, de la capa asfáltica, se presentan por la suma esfuerzos horizontales de tensión generados por las cargas transmitidas por los vehículos o aeronaves pesadas. Según la teoría elástica, "estas grietas se inician en la fibra inferior de la capa asfáltica o cerca de ella, propagándose luego hacia arriba para aparecer en la superficie, siendo visible al ojo humano cuando ya el daño ha ocurrido y ha atravesado toda la capa".

A pesar de esto, estudios recientes sobre las fallas recientes observadas en algunos pavimentos, evidencian que contradicen esta teoría. Debid a que en la práctica, “se ha
observado con frecuencia la aparición de grietas que se concentran en la superficie de la capa, en los primeros 10 milímetros. Estas grietas se consideran como top-down cracking, o agrietamiento de arriba-abajo”. [8]

- De otro lado, el daño que el asfalto sufre por humedad, está relacionado con el enlace por cohesión, donde se involucra la fuerza de cohesión del asfalto y el enlace por adhesión, que también se relaciona con la fuerza de interacción entre el agregado y el asfalto. [9]

- Con respecto al envejecimiento del asfalto, este se presenta cuando se por causal del tiempo se alteran las propiedades físicocuímicas de los materiales, lo cual ocasiona pérdidas económicas por el deterioro prematuro de la carpeta asfáltica.

 De acuerdo a Vargas & Reyes (2010), cuando se elabora la mezcla asfáltica, “los asfaltos se oxidan por acción del oxígeno del aire y de las altas temperaturas de mezclado” ocasionando que el fenómeno de envejecimiento inicie en forma inmediata, y posteriormente, esto se presenta por diferentes factores climáticos que inciden en los pavimentos. Para que la capa asfáltica tenga mayor durabilidad es necesario considerar el efecto de cambio que se da en la composición química del cemento asfáltico en el proceso de mezclado en caliente y durante el tiempo de servicio.

 “Para incluir este efecto antes que nada es necesario estudiar el fenómeno de oxidación del asfalto, ya que son las características de oxidación del ligante del petróleo las que condicionan el comportamiento y durabilidad del pavimento después de su elaboración, así como la composición química inicial”. [10]
2.1.3. Evaluación de pavimentos. La evaluación de los pavimentos, se realiza para evaluar su estado físico en cuanto a daños que pueda tener y que puedan afectar su función estructural. [11]

2.1.3.1. Índice Internacional de Rigurosidad (IRI). En cuanto a la evaluación de la superficie, se debe tener en cuenta que la calidad del pavimento se analiza al determinar la regularidad de su superficie. Lo cual se refiere a las irregularidades verticales acumuladas a lo largo de un kilómetro, con respecto a un plano horizontal en un pavimento. (Rico & Otros, 2002)

Los daños en la superficie del pavimento asfáltico, se presenta por causas relacionadas con su proceso de construcción y también por el desgaste que sufre por el tránsito de vehículos o aeronaves.

La regularidad superficial es determinada, por un índice que se refiere a una determinada longitud de carretera. Estos índices se obtienen midiendo el perfil longitudinal y aplicando un modelo matemático de análisis para reducir el perfil a un índice estandarizado.

Actualmente son empleados equipo perfilógrafo longitudinal os modernos para establecer el índice de rugosidad, “como es la magnitud de 3 o 7 m y que mediante un sistema gráfico o computarizado”, con el cual se determina la magnitud de las irregularidades en el punto medio del perfilógrafo, respecto a los dos extremos.

Con este sistema, se analiza la red por segmentos de 1 km, y se establece sus características de regularidad superficial. Se realiza la medición del IRI para cada segmento. Para este caso, se decide en principio un valor límite de IRI igual a 3,5
m/km, que proporciona valores internacionales, y a la experiencia nacional. También se debe tener en cuenta que, dicho valor de umbral se puede modificar de acuerdo con las características de la red analizada, y con la experiencia del administrador o responsable de la misma. [12]

Figura 1. Índice Internacional de Rugosidad.

<table>
<thead>
<tr>
<th>Tránsito Diario Promedio Anual (TDPA)</th>
<th>Índice Internacional de Rugosidad, IRI (m/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 4 999</td>
<td>Muy bueno</td>
</tr>
<tr>
<td>5 000 – 9 999</td>
<td>Bueno</td>
</tr>
<tr>
<td>10 000 – 19 999</td>
<td>Regular</td>
</tr>
<tr>
<td>> 20 000</td>
<td>Muy malo</td>
</tr>
</tbody>
</table>

Figura 2. Recomendaciones del TRB para la selección de valores máximos admisibles de IRI en función del TDPA.
Cuando se ingrese la información correspondiente al módulo de IRI, el sistema mostrará un listado, en donde se podrá observar para cada uno de los segmentos estudiados su respectivo valor de IRI. También se mostrará otro listado correspondiente a aquellos segmentos que están por debajo del límite de IRI establecido. Un último listado se proporcionará, con los segmentos que excedan dicho valor de umbral, y que requieren de una conservación a corto plazo.

2.1.3.2. **Coeficiente de Fricción (CF).** El valor que determina el coeficiente de fricción para pavimentos mojados, depende de factores del asfalto como el estado de la superficie de rodamiento, drenaje, del usuario como la velocidad y el estado de las llantas, y factores climáticos.

Este coeficiente se da en función de la velocidad y cantidad de agua que exista sobre el pavimento, así como del tipo y del estado de la carpeta. Características de la superficie del pavimento asfáltico cambian con el tiempo debido al desgaste de la superficie por acciones repetitivas del paso de las llantas de los vehículos o aeronaves.

Este desgaste será más o menos intensa dependiendo del tipo de agregado utilizado. En cuanto a los agregados calizos el problema es de gran importancia, lo que quizá no sea tan marcado cuando se utilizan agregados de origen volcánico es necesario determinar periódicamente de manera indirecta la resistencia al deslizamiento mediante equipos que determinen el coeficiente de fricción.

Actualmente se emplean equipos sencillos que proporcionan una medida adecuada del coeficiente de fricción, como lo es el péndulo del TRRL (Transport and Road
Research Laboratory) (Rico & Otros, 2010). El ensayo se realiza con el pendulo de fricción ver figura X.

Figura 3. Péndulo de fricción del TRRL.

Este dispositivo sirve permite obtener un coeficiente de fricción que mantiene correlación con la fuerza de fricción real, y ayuda a valorar las características deslizantes de la superficie de un pavimento.

Y con esta evaluación, permite determinar la pérdida de energía de un péndulo, dichas características corresponden a ciertas especificaciones, provisto en su extremo de una zapata de caucho. La pérdida de energía se mide por el ángulo suplementario de la oscilación del péndulo. (Rico & Otros, 2010)
2.1.3.3. Evaluación estructural. Esta evaluación permite determinar a la aptitud de un pavimento para soportar el tránsito sin presentar deformaciones acumuladas mayores de 3,5 cm al final de su vida útil.

Al realizar la evaluación estructural se realiza una estimación de la condición actual del pavimento y se realizar una proyección a futuro de su vida útil, teniendo en cuenta el flujo vehicular diario.

Para esta evaluación, se realizan mediciones en campo de la deflexión que el pavimento presenta, bajo la aplicación de una carga estándar y con el procedimiento propuesto por el Invima.

La deflexión tolerable, es establecida de acuerdo con los criterios de la entidad de cada país, teniendo en cuenta en el espesor de carpeta existente sin agrietamiento y el índice de tránsito de diseño.

Dependiendo del caso, de acuerdo a Rico (2005),

“cuando los resultados del sistema indiquen que la solución apunta a la reconstrucción, parcial o total, forzosamente el ingeniero responsable deberá realizar por su cuenta, o a través de un consultor, un estudio geotécnico detallado para el nuevo diseño de la sección estructural del pavimento”,

Estos estudios, permitiran realizar un diseño nuevo teniendo en cuenta el nuevo espesor de las capas a partir de la subrasante y, teniendo en cuenta la alternativa de reutilizar los materiales existentes.

2.2.1. Mantenimiento de pistas de aterrizaje. El desgaste y deterioro del pavimento es una constante debido al flujo de vehículos y aeronaves en los aeropuertos, así como los
factores climáticos que afectan de forma directa la superficie del pavimento. (Crespo, 2004)

Por tal motivo se hace necesario, realizar las acciones necesarias para garantizar la vida útil de las pistas o pavimentos y de esta forma cumplir con la normatividad existente para continuar operando cada año.

Existen varias acciones de mantenimiento para la conservación del pavimento, dentro de las cuales se incluye el mantenimiento rutinario, periódico y de reconstrucción. [13]

En el mantenimiento rutinario, se realizan actividades de forma continua, diaria, semanal, mensual y anual, para garantizar la seguridad de los usuarios de los pavimentos, en este caso las pistas de aterrizaje. Se pueden realizar trabajos de limpieza, bacheo, desazolve de cunetas, chapeo del derecho de vía, limpieza y reposición de señales, repintado de marcas de pavimento, y limpieza de alcantarillas, entre otras.

En cuanto al mantenimiento periódico, se puede realizar trabajos planeados y previstos en un cronograma previo de trabajo para un tiempo determinado. Todo esto para garantizar la función estructural del pavimento de las pistas. Algunos de estos trabajos pueden ser; tratamientos superficiales, mantenimiento o reparación de microcarpetas, las sobrecarpetas, la recuperación en caliente, el fresado superficial, la texturización, entre otros.

En cuanto al mantenimiento o acción de reconstrucción, implica volver a construir parcial o totalmente una o toda la sección estructural del pavimento, para conservar su función estructural y de esta forma continuar resistiendo el transito sobre ella. Algunos
de estas acciones de reconstrucción son; el White-topping, la recuperación, la modificación de materiales, la estabilización, la transformación en concreto compactado, entre otras. [14]

2.3. MARCO JURÍDICO

2.3.1. Leyes y Decretos.

Resolución 5036 del 18 de septiembre de 2009. Por medio de esta Resolución, actualmente se establece en Colombia un transporte público bajo la regulación del Estado de forma oficial por medio de la Aeronáutica Civil, quien ejerce el control y la vigilancia necesarios para su adecuada prestación en condiciones de calidad, oportunidad y seguridad. La Aeronáutica Civil tiene el compromiso y la responsabilidad de garantizar el transporte aéreo en el territorio nacional y tiene a disposición, de toda la ciudadanía, la normatividad institucional que constituye a la Aeronáutica Civil como una entidad, sus funciones y sus dependencias.

Ley 105 de 1993. En esta Ley, se encuentran las “disposiciones básicas sobre el transporte, se redistribuyen competencias y recursos entre la Nación y las Entidades Territoriales en Colombia, se reglamenta la planeación en el sector transporte y se dictan otras disposiciones” donde en el Título IV se presentan las disposiciones sobre el transporte aéreo. Y en su Capítulo Segundo se encuentra lo referido al transporte aéreo en Colombia.
Ley 12 de 1947. En esta Ley se encuentra la aprobación para Colombia, con respecto a la “Convención sobre Aviación Civil Internacional”, firmada en Chicago el 7 de diciembre de 1944” y la Ley 19 de 1992, donde así mismo se aprueba el “Protocolo Relativo a una enmienda al Convenio sobre Aviación Civil Internacional (Artículo 83 Bis)” firmado en Montreal el 6 de octubre de 1980.

Decreto 260 de 2004. En este Decreto, se modifica la estructura de la Unidad Administrativa Especial de Aeronáutica Civil - Aerocivil y se dictan otras disposiciones.

Decreto 823 de 2017. En este decreto, se modifica la estructura de la Unidad administrativa Especial de Aeronáutica Civil (Aerocivil) y se dictan otras disposiciones.

Decreto 2058 de 1951. En este decreto, se fija la jornada de trabajo de los aviadores civiles.

Decreto 1078 de 2015. Por medio de este Decreto, se expide el Decreto Único Reglamentario del Sector Tecnologías de la Información y las Comunicaciones” en su Título 4 “De las telecomunicaciones del servicio móvil aeronáutico y radionavegación aeronáutica.”

Decreto 1079 de 2015. En este Decreto, se expide el Decreto Único Reglamentario del Sector Transporte.” En su Título 2 “de la aviación civil – modo aéreo”.

2.3.2. Normatividad en aeropuertos

Reglamentos Aeronáuticos de Colombia (RAC). En este documento se describen las normas que deben seguir los aeropuertos, aeródromos y helipuertos en Colombia, así como también se establecen los requerimientos para su construcción, operación y óptimo funcionamiento. [3]
En cuanto al mantenimiento la Aeronáutica Civil en su Norma LAR 4, adoptó una nueva metodología y sistema de nomenclatura para los Reglamentos Aeronáuticos de Colombia, en aras de su armonización con los Reglamentos Aeronáuticos Latinoamericanos –LAR, con lo cual, la mencionada Parte Cuarta de los Reglamentos Aeronáuticos, pasó a denominarse RAC 4.

La Aeronáutica Civil, también define cada criterio con lo que se debe trabajar en cuanto al mantenimiento en cada una de las terminales aéreas en Colombia.

Ejecución de los trabajos requeridos para asegurar el mantenimiento de la aeronavegabilidad de las aeronaves, lo que incluye una o varias de las siguientes tareas: reacondicionamiento, inspección, reemplazo de piezas, rectificación de defectos e incorporación de una modificación o reparación. [3]

2.4. MARCO GEOGRÁFICO

Actualmente operan en Colombia 54 aeropuertos a cargo a la Aeronáutica Civil y 16 a cargo de concesiones aeroportuarias, tal como se muestra en el mapa de la figura 4:

Figura 4. Mapa de aeropuertos en Colombia.
Para el caso del presente trabajo, sobre el aeropuerto que se estudiará, el cual es el aeropuerto de Medina en Cundinamarca la siguiente es la ubicación geográfica de dicho terminal aéreo ver figura x:

2.5. ESTADO DEL ARTE

A continuación, se muestran estudios hallados con respecto a la temática que se utilizan en otros aeropuertos pero nos sirven de guía para este trabajo.

2.5.1. Diseño del Pavimento de la Pista del Aeropuerto El Edén de Armenia Departamento de Quindío por los métodos racionales. Este estudio se tuvo en cuenta
por su contenido teórico práctico con respecto al tema del presente trabajo sobre ingeniería de pavimentos.

En el mismo se describen diferentes conceptos y teorías que servirán para el desarrollo del presente trabajo, donde se menciona que se realizó una investigación detallada sobre el análisis de la información existente de la estructura de pavimento rígido del aeropuerto el Edén de Armenia en el departamento de Quindío, para procesar y realizar la evaluación de la estructura por el método de diseño de aeropuertos de la PCA (PORTLAND CEMENT ASSOCIATION), el cual es un método racional para diseño de pavimentos. Además, se verificaron los diseños tanto el existente diseñado con la metodología de la Federal Aviation Administration (FAA), como el evaluado por la PCA; calculando con la teoría de Westergaard los esfuerzos y deformaciones presentes en la losa de concreto. [15]

2.5.2. Análisis del sistema de reparación de pavimentos flexibles por inyección neumática de mezclas asfálticas en frío, tecnología velocity patching.

Este estudio se analizó por su contenido tanto teórico como práctico con respecto a la fabricación de pavimentos, cuyo objetivo fue el de analizar y reconocer las características específicas de las reparaciones efectuadas a pavimentos flexibles con el sistema Velocity Patching, teniendo en cuenta el modo de colocación de la mezcla y las propiedades físicas de la misma.

Para su desarrollo, se identificaron las propiedades de la mezcla asfáltica en frío utilizada para efectuar reparaciones en pavimentos (parcheo). Se analizaron los
resultados de los ensayos de laboratorio efectuados a la mezcla y a los componentes de la misma, con respecto a la fórmula de trabajo y a las especificaciones particulares que haya lugar. Así mismo, se analizó el sistema de colocación de mezclas asfálticas en frio para reparación de baches, usando la tecnología Velocity Patching. Se inspeccionaron algunas de las reparaciones efectuadas con el sistema Velocity Patching, para apreciar el comportamiento que ha tenido la reparación en un periodo de tiempo determinado. Y también se analizaron y establecieron las características físicas con las que debe contar un bache, para que sea apta su reparación mediante el sistema Velocity Patching. [16]

2.5.3. Supervisión y control de la obra rodaje golfo 2da etapa y obras complementarias (pavimento) aeropuerto internacional Benito Juárez, Ciudad de México.

Este estudio se analizó por su contenido teórico y práctico, sobre la fabricación de pavimentos en un aeropuerto. Tuvo como objetivo la supervisión de cada una de las obras complementarias (pavimento) aeropuerto internacional Benito Juárez, Ciudad de México. Para su realización se utilizó bitácora de hora electrónica haciendo apertura con el nombre de la obra y etapa de los contratos que allí participaban. Se realizó la supervisión y verificación de del cumplimiento de la ejecución de los conceptos de obra de acuerdo a los objetivos del proyecto y las normas. Así mismo, se realizaron recorridos de inspección, de detalles, procesos y procedimientos, correcciones u observaciones comprometiendo a la empresa contratada a su cumplimiento por medio de minutas. [17]
2.5.4. Diseño de pavimentos para aeropistas. Este estudio se analizó para estudiar todo lo relacionado con el tema del diseño de pavimentos en aeropuertos.

Se realizó el procedimiento para lograr diseños de pavimentos que cumplan con las exigencias de las aeropistas, garantizando que la repartición de la carga de las ruedas de las aeronaves sea tal que las presiones en el terreno se reduzcan hasta una intensidad tolerable. Para lo cual, los factores principales de estudio fueron la carga de las ruedas y las características del suelo sobre el que se colocará el pavimento.

Su objetivo fue el diseño de distintas estructuras de pavimento capaces de resistir las cargas presentes en una aeropista perteneciente a un aeropuerto en el que se llevan a cabo un número importante de movimientos al año, así como obtener la resistencia relativa (el valor ACN-PCN) de cada uno de estos diseños. Para esto, se realizó la búsqueda de información necesaria para la comprensión de los conceptos básicos utilizados en el diseño de pavimentos; se recopilaron las normas internacionales emitida por la Organización de Aeronáutica Civil Internacional (OACI) y la normativa estadounidense a cargo de la Administración Federal de Aviación (FAA). Se usó del Software FAArfield, con el cual se realizó el diseño antes mencionado; se aprendió y utilizó.

Para el análisis en el software se usan los siguientes datos:

- Aeronave de diseño involucrando (trocha, peso y numero de trenes)
- CBR (CALIFORNIA BEARING RATIO) para evaluar la calidad del material de suelo con base en su resistencia.
- Las salidas anuales equivalentes de despegues en los últimos años.
Estos datos se ingresan en el software y se determina el espesor mínimo que debe contener la estructura mínima del pavimento.

Por otro lado, con el Software COMFAA se obtuvo la clasificación ACN-PCN de las estructuras diseñadas. [18]
3. METODOLOGÍA

1.5. CRONOGRAMA

El siguiente es el cronograma de actividades de acuerdo a los objetivos propuestos.

Tabla 1. Cronograma de ejecución del proyecto fases.

<table>
<thead>
<tr>
<th>Fases</th>
<th>Actividades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase 1:</td>
<td>Identificar los aspectos socioeconómicos de la Provincia de Medina Cundinamarca</td>
</tr>
<tr>
<td>Fase 2:</td>
<td>Realizar un diagnóstico de la situación actual del aeropuerto de Medina en Cundinamarca para identificar, las fallas en la infraestructura, los servicios que se prestaban y su nivel de calidad.</td>
</tr>
<tr>
<td>Fase 3:</td>
<td>Diseñar un plan de mejora de la infraestructura, servicios y pista del aeropuerto de Medina en Cundinamarca.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

1.6. PRESUPUESTO

Tabla 2. Presupuesto global de la propuesta por fuentes de financiación (en miles de $).
<table>
<thead>
<tr>
<th>Rubros</th>
<th>Valor unitario</th>
<th>Valor total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipos:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Computador</td>
<td>1500.000</td>
<td>1500.000</td>
</tr>
<tr>
<td>2 Celulares</td>
<td>500.000</td>
<td>1.000.000</td>
</tr>
<tr>
<td>Software</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Materiales:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipos para el diagnóstico de la pista del aeropuerto</td>
<td>Global</td>
<td>100.000</td>
</tr>
<tr>
<td>Salidas de campo (2)</td>
<td>1.000.000</td>
<td>1.000.000</td>
</tr>
<tr>
<td>Material bibliográfico (10)</td>
<td>45.000</td>
<td>450000</td>
</tr>
<tr>
<td>Elementos de seguridad personal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Cascos, botas, ropa de trabajo, guantes, gafas, etc.)</td>
<td>90.000</td>
<td>90000</td>
</tr>
<tr>
<td>Servicios técnicos:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construcciones</td>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4.140.000</td>
</tr>
</tbody>
</table>
Tabla 1. Descripción de los gastos de personal (en miles de $).

<table>
<thead>
<tr>
<th>Investigador / experto/ auxiliar</th>
<th>Formación académica</th>
<th>Función dentro del proyecto</th>
<th>Dedicación Horas/semana</th>
<th>Valor Hora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesar Augusto Castro Melo</td>
<td>Ingeniero Civil</td>
<td>Investigador</td>
<td>10 horas</td>
<td>20.000</td>
</tr>
<tr>
<td>Nicolás Ahumada Bermeo</td>
<td>Ingeniero Civil</td>
<td>Investigador</td>
<td>10 horas</td>
<td>20.000</td>
</tr>
<tr>
<td>Total (6 meses de trabajo: 20 horas semanales x 24 semanas)</td>
<td></td>
<td></td>
<td></td>
<td>480.000 c/u</td>
</tr>
</tbody>
</table>

Tabla 2. Descripción de los equipos que se planea adquirir (en miles de $).

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Justificación</th>
<th>Valor total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Computador</td>
<td>Almacenamiento y digitalización de la información</td>
<td>1.500.000</td>
</tr>
<tr>
<td>2 Celulares</td>
<td>Dispositivos de comunicación y digitalización de la información.</td>
<td>1.000.000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2.500.000</td>
</tr>
</tbody>
</table>
Tabla 3. Descripción y cuantificación de los equipos de uso propio (en miles de $)

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Valor total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Computador</td>
<td>1.500.000</td>
</tr>
<tr>
<td>2 Celulares</td>
<td>1.000.000</td>
</tr>
<tr>
<td>Diversos equipos de medición y evaluación</td>
<td>100.000</td>
</tr>
<tr>
<td>Total</td>
<td>2.600.000</td>
</tr>
</tbody>
</table>

Tabla 4. Descripción del software que se planea adquirir (en miles de $).

<table>
<thead>
<tr>
<th>Software</th>
<th>Justificación</th>
<th>Valor total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Está incluido en el equipo de computador Paquete de Office</td>
<td>Recolección y clasificación de la información</td>
<td>0-</td>
</tr>
<tr>
<td>Están incluidos en los dispositivos móviles (celulares) Android</td>
<td>Recolección y clasificación de la información</td>
<td>0-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0-</td>
</tr>
</tbody>
</table>
Tabla 5. Descripción y justificación de los viajes (en miles de $).

<table>
<thead>
<tr>
<th>Lugar / No. De viajes</th>
<th>Justificación</th>
<th>Pasajes ($)</th>
<th>Estadía ($)</th>
<th>Total días</th>
<th>Total</th>
</tr>
</thead>
</table>
| Salidas de campo al aeropuerto de Medina (5) | Realización de cada uno de los objetivos propuestos. | 25000
X 2 = 50.000 | 200.000 | 2 | 500.000 |
| Entrevistas con Habitantes de Medina | Consulta de normas actuales | 5.000 x 2 = 10.000 | - | 2 | 20.000 |
| Reuniones con tutor universidad | Revisión y consulta del estado de trabajo académico | 5.000 x 2 = 10.000 | - | 24 | 240.000 |
| **Total** | | | | **24 Semanas (6 meses)** | **660.000** |

Tabla 6. Valoración de las salidas de campo (en miles de $).

<table>
<thead>
<tr>
<th>Item</th>
<th>Costo unitario</th>
<th>#</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Visita al aeropuerto de Medina | 250.000 | 2 | 500.000
\hline
Total | **500.000**
\hline

Tabla 7. Materiales y suministros (en miles de $)

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Justificación</th>
<th>Valor total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversos equipos de medición y evaluación</td>
<td>Equipos para el diagnóstico de la pista del aeropuerto</td>
<td>100.000</td>
</tr>
<tr>
<td>Elementos de seguridad personal</td>
<td>Se utilizarán para poder ingresar en las áreas de trabajo en el aeropuerto.</td>
<td>90.000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>190.000</td>
</tr>
</tbody>
</table>

Tabla 8. Bibliografía (en miles de $).

<table>
<thead>
<tr>
<th>Item</th>
<th>Justificación</th>
<th>Valor total</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 textos</td>
<td>Utilizados para la investigación y consulta de los conceptos y teoría del presente trabajo</td>
<td>1.350.000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.350.000</td>
</tr>
</tbody>
</table>
3.1. TIPO DE INVESTIGACIÓN

El tipo de investigación será descriptiva, debido a que esta abarca la descripción, registro, análisis e interpretación de la naturaleza actual, y la composición o procesos de los fenómenos. Mediante el enfoque se pueden hacer conclusiones determinantes o sobre cómo una persona, grupo o cosa se conducirá o funciona en el presente. Esto debido a que la investigación descriptiva trabaja sobre realidades de hecho, y su característica fundamental es la de presentar una interpretación correcta.

3.2. MÉTODO DE ESTUDIO

El método de estudio será investigativo y cuantitativo, debido a que con este método se llegará conocer todo lo relacionado con la teoría propuesta, permitirá realizar las mediciones de las variables establecidas, y de esta forma poder formular las posibles soluciones al problema encontrado, de acuerdo a los requerimientos del aeropuerto en estudio.
3.3. FASES DEL TRABAJO DE GRADO

Fase 1: Identificar los aspectos socioeconómicos de la Provincia de Medina Cundinamarca.

Fase 2: Realizar un diagnóstico de la situación actual del aeropuerto de Medina en Cundinamarca, identificando las fallas en la infraestructura, los servicios que se prestaban y su nivel de calidad.

Fase 3: Diseñar un plan de mejora de la infraestructura, servicios y pista del aeropuerto de Medina en Cundinamarca.

3.4. INSTRUMENTOS

Para el presente trabajo se utilizaron los siguientes instrumentos:

- Textos teóricos sobre el tema del presente trabajo.
- Herramientas digitales (software) para la recolección de la información arrojada por la etapa de diagnóstico.
- Bitácora de registro de las visitas al lugar de estudio como lo es el aeropuerto de Medina.

3.5. POBLACIÓN Y MUESTRA

Población: 10.080 Habitantes del municipio de Medina, Cundinamarca.
Muestra: la encuesta se realizó a 30 habitantes del municipio entre caso urbano y rural, moradores de edades entre 19 y los 49 años del Municipio, la cual representa el 38,6% del total de la población, a estas personas se les realizó una encuesta referente al aeropuerto.

3.6. ALCANCES Y LIMITACIONES

Mediante el logro de los objetivos se logra alcanzar los siguientes aspectos relevantes para el presente trabajo:

- Se realizó la búsqueda y análisis de la información para tener claridad sobre los conceptos empleados para el desarrollo de los objetivos.
- Se realizó la búsqueda y análisis de las normas y requerimientos que actualmente se necesitan en Colombia, para que los aeropuertos se encuentren operando.
- Se hicieron las entrevistas necesarias con los habitantes de Medina.
- Se produjeron las entrevistas necesarias con los funcionarios de la Aerocivil.
- Se efectuaron las visitas necesarias al aeropuerto de Medina.
- Se estudiaron las herramientas tanto físicas como digitales para el desarrollo de cada objetivo planteado.
4. RESULTADOS

4.1 Identificar los aspectos socioeconómicos de la Provincia de Medina Cundinamarca

Se realizaron consultas en diferentes fuentes de información para determinar los aspectos socioeconómicos y la competitividad de la Provincia Medina Cundinamarca de la cual se obtuvo un informe general de los aspectos socio económico y competitivo de la región de la provincia a través de la Cámara de Comercio de Bogotá.

4.1.1 CONTEXTO REGIONAL: BOGOTÁ-CUNDINAMARCA

En los últimos años, la región que integran Bogotá y Cundinamarca se ha posicionado en el escenario nacional como la más competitiva y la que ofrece mejores oportunidades para el desarrollo de actividades productivas, al tiempo que se consolida como una de las regiones con mayor calidad de vida en el país.

Sin embargo, el reto de posicionarse como una de las mejores en América Latina aún es grande: existen diferentes aspectos de la plataforma competitiva como las vías de conexión regional y nacional; la formación del recurso humano; así como la incorporación de la ciencia, la tecnología y la innovación en los procesos productivos, en las que se deben profundizar los esfuerzos de la cooperación público – privada, de acuerdo con la figura 7.
Figura 7. División Política Administrativa de Cundinamarca

En la actualidad, el departamento de Cundinamarca cuenta con 116 municipios, los cuales se distribuyen en 15 provincias, que, si bien no constituyen formalmente entidades territoriales con un aparato institucional público propio, sí se han posicionado como el escenario ideal para que la administración departamental focalice y gane en pertinencia en el proceso de diseño y ejecución de sus políticas, programas y proyectos. En este contexto, en el departamento existen 8 Mesas Provinciales de Competitividad conformadas, de las cuales 3 son coordinadas por la Cámara de Comercio de Bogotá (Sumapaz, Sabana Centro y Soacha), mientras que otras 5 están a cargo de la Gobernación de Cundinamarca y otras entidades (Sabana Occidente, Tequendama, Alto Magdalena, Oriente, y Guavio).

4.1.2 DIAGNÓSTICO SOCIO-ECONÓMICO Y COMPETITIVO DE LA PROVINCIA DE MEDINA

La Provincia de Medina se encuentra localizada al oriente del departamento de Cundinamarca, limita por el norte con la Provincia del Guavio y el departamento de Boyacá, por el sur, el occidente y el oriente con el departamento del Meta. Tiene una extensión territorial de 2.082 km², el 9,3% del área total del departamento, lo que le permite ubicarse como la cuarta Provincia en cuanto a tamaño en el departamento. Su jurisdicción comprende los municipios de Paratebueno y Medina (cabecera de la Provincia.)
Figura 8. División política y localización de la Provincia de Medina.

Fuente: CEPEC - Universidad del Rosario, construcción propia.

4.1.3 TENDENCIAS SOCIO-ECONÓMICAS RECENTES DE LA PROVINCIA DE MEDINA.

En esta sección se realiza un análisis de las tendencias socioeconómicas recientes de la Provincia de Medina, en términos de su base económica y dotación de recursos, las condiciones de vida de sus habitantes, las infraestructuras y servicios con las que cuenta, su desempeño fiscal, así como la gestión de sus instituciones en el desarrollo de proyectos provinciales estructurantes.

4.1.4 BASE ECONÓMICA Y DOTACIÓN DE RECURSOS.

4.1.4.1 Población.

En el 2016, la Provincia de Medina se ubicó como el mercado de menor tamaño de Cundinamarca según la cantidad de habitantes (17.599 personas), al concentrar el 0,7% del total de los habitantes del departamento. Su nivel de población, está muy por debajo
de Provincias como Magdalena Centro (29.077 habitantes), Rionegro (75.144 habitantes), o más aún de provincias de mayor dinamismo económico y empresarial como las que conforman la Sabana de Bogotá, las cuales representan más de la mitad (52%) del mercado departamental.

Figura 9 distribución de la población

Gráfica 5
Distribución de la Población Provincia Medina 2016

Fuente: DANE CENSO 2016

Analizando la estructura etaria de la Provincia de Medina, se puede observar que la mayor parte de su población es joven. El segmento de habitantes entre los 0 y 9 años representa un 22,1% de la población de la provincia. De otro lado, los jóvenes entre 10 y 19 años, representan el 21,2% del total de población. Otro aspecto que se debe tener en cuenta, es que la población entre los 19 años y los 49 años, representan el 38,6% del total de población en la provincia. Dado lo anterior, se puede evidenciar que la población en edad de trabajar (PET) de la provincia de Medina representa un alto porcentaje dentro del total de población.
En síntesis, en términos del tamaño del mercado poblacional, es posible afirmar que la Provincia de Medina se establece como el menor mercado del departamento, en el que la mayor parte de su población es joven, y con orientación a vivir en áreas rurales. Sin embargo, se debe mencionar que su cercanía con Villavicencio, capital del departamento del Meta, les permite a los municipios de la Provincia de Medina un acceso preferencial a un mercado cercano a los 500 mil habitantes.

4.1.3.1 Producto Interno Bruto (PIB)

En cuanto al Producto Interno Bruto, según las cifras de la Secretaría de Planeación de Cundinamarca, en 2007 Medina fue la provincia de Cundinamarca que tuvo la menor contribución al Producto Interno Bruto (PIB) del departamento, el 0,9% del PIB departamental, nivel que se encuentra muy por debajo de provincias como Magdalena Centro (1,5%), Guavio (3,8%) y Oriente (3,2%), que a pesar de que no tienen las mismas condiciones de las provincias ubicadas en la Sabana de Bogotá, sus niveles de desarrollo no son comparables a los de la Provincia de Medina.

Grafica 8. Participación de provincias en el PIB de Cundinamarca.
Las cifras sectoriales revelan que el sector agropecuario es el que tiene una mayor contribución a la generación de valor en la provincia, ya que concentra el 36,3% del PIB provincial. Por su parte, la industria tiene un aporte menor que asciende al 5,9% de la producción provincial. Otro de los aspectos que se debe resaltar es que, al igual que en otras regiones del departamento orientadas al sector rural, las actividades de administración pública y otros servicios para la comunidad tienen un aporte significativo al PIB de la Provincia (18,6%), en la medida que un alto porcentaje de la población de sus municipios obtiene su sustento al emplearse con entidades del Estado.
Al enfocar el análisis dentro de la provincia, se puede apreciar que el municipio de Medina contribuye con más de la mitad del PIB provincial (58,1%), mientras que el municipio de Paratebueno contribuye con el restante 41,9% del PIB de la provincia.

4.1.3.1 Actividad Agrícola.

Según cifras de la Secretaría de Agricultura de Cundinamarca, durante el año 2009 la Provincia de Medina se posicionó como una de las regiones del departamento con menor extensión de tierras dedicadas a la producción agrícola (contaba con 8.657 hectáreas de área cosechada), ubicándose como la decimocuarta provincia del departamento en términos del área cosechada, sólo por encima de Soacha (3.629). Adicionalmente, si se tiene en cuenta que la provincia de Medina cuenta con un área rural de 208.018 hectáreas, se puede observar que solamente el 4,2% del área rural fue área cosechada, la menor tasa de Cundinamarca, y que resulta muy por debajo de provincias como
Gualivá o Tequendama, en las cuales su área equivale al 26,9% y 26,1% de su área rural, respectivamente.

Figura 10

Área cosechada en las provincias de Cundinamarca

![Gráfico de barras mostrando la situación de la área cosechada en varias provincias de Cundinamarca.](Image)

En relación a los cultivos, la mayor parte (53,4%) de las tierras cosechadas en la Provincia de Medina están destinadas al cultivo de productos permanentes, lo que le permitió posicionarse como la séptima provincia del departamento con el mayor número de hectáreas destinadas a dicho uso, por detrás de provincias como Sumapaz, Bajo Magdalena o Magdalena Centro. En términos de cultivos transitorios la situación de la Provincia no es muy diferente. Si bien es cierto que se registra una importante cantidad
de hectáreas cosechadas, estas ocupan el puesto 12 en el escenario departamental, y sólo supera los indicadores de las provincias de Magdalena Centro, Gualivá y Soacha.

Los cultivos permanentes han tenido un comportamiento bajo de las 530,75 toneladas de producción a 251 toneladas de producción en el 2015 con una disminución 52,70% en cultivos como Cacao Sin Asociación, Cacao Con Asociación, Café, Caucho y Piña.

Tabla 10 Cantidad de tipo de cultivos en el municipio de medina

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Área Sembrada (ha)</td>
<td>75</td>
<td>75</td>
<td>85</td>
<td>50</td>
<td>0</td>
<td>-10</td>
<td>-35</td>
</tr>
<tr>
<td>Área Cosecha (ha)</td>
<td>75</td>
<td>75</td>
<td>41</td>
<td>40</td>
<td>0</td>
<td>-34</td>
<td>-10</td>
</tr>
<tr>
<td>Rendimiento (t/ha)</td>
<td>1.5</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-0.5</td>
<td>0</td>
</tr>
<tr>
<td>Producción</td>
<td>112.5</td>
<td>112.5</td>
<td>41</td>
<td>40</td>
<td>0</td>
<td>-71.5</td>
<td>-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Área Sembrada (ha)</td>
<td>54</td>
<td>54</td>
<td>50</td>
<td>61</td>
<td>0</td>
<td>-4</td>
<td>11</td>
</tr>
<tr>
<td>Área Cosecha (ha)</td>
<td>44</td>
<td>44</td>
<td>25</td>
<td>21</td>
<td>0</td>
<td>-19</td>
<td>-4</td>
</tr>
<tr>
<td>Rendimiento (t/ha)</td>
<td>1.5</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-0.5</td>
<td>0</td>
</tr>
<tr>
<td>Producción</td>
<td>66</td>
<td>66</td>
<td>25</td>
<td>21</td>
<td>0</td>
<td>-41</td>
<td>-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Área Sembrada (ha)</td>
<td>64.8</td>
<td>64.8</td>
<td>68.8</td>
<td>75</td>
<td>0</td>
<td>-4</td>
<td>6.2</td>
</tr>
<tr>
<td>Área Cosecha (ha)</td>
<td>41</td>
<td>41</td>
<td>58.8</td>
<td>32</td>
<td>0</td>
<td>-17.8</td>
<td>-26.8</td>
</tr>
<tr>
<td>Rendimiento (t/ha)</td>
<td>2.15</td>
<td>2</td>
<td>1.5</td>
<td>2.5</td>
<td>-0.25</td>
<td>-0.5</td>
<td>1</td>
</tr>
<tr>
<td>Producción</td>
<td>92.25</td>
<td>92.25</td>
<td>88</td>
<td>80</td>
<td>0</td>
<td>-4.25</td>
<td>-8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Área Sembrada (ha)</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Área Cosecha (ha)</td>
<td>0</td>
<td>0.5</td>
<td>4.5</td>
<td>6.5</td>
<td>0.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Rendimiento (t/ha)</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Producción</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>14</td>
<td>1</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Área Sembrada (ha)</td>
<td>15</td>
<td>15</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>-11</td>
<td>-1</td>
</tr>
<tr>
<td>Área Cosecha (ha)</td>
<td>13</td>
<td>13</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-13</td>
<td>3</td>
</tr>
<tr>
<td>Rendimiento (t/ha)</td>
<td>20</td>
<td>20</td>
<td>38</td>
<td>42</td>
<td>0</td>
<td>15</td>
<td>-3</td>
</tr>
<tr>
<td>Producción</td>
<td>260</td>
<td>260</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>-260</td>
<td>96</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia

4.1.2.3 Aspectos fiscales
En el 2017 las quince Provincias que integran el departamento de Cundinamarca, registraron altos porcentajes de gasto público destinado a inversión (las participaciones fueron superiores al 70% del total del gasto). En términos agregados, los municipios que conforman la Provincia de Medina destinaron el 76% del total de su gasto a inversión, nivel que aún es distante del que tuvieron provincias como Soacha (88%), Magdalena Centro (83%), Rionegro (83%), Sumapaz (82%), y Oriente (82%).

Figura No 12 Inversión publica municipio de medina

Porcentaje del gasto público destinado a inversión en las Provincias de Cundinamarca 2017

Fuente: DANE 2018

Se destaca el hecho de que, para realizar la inversión, los municipios de la Provincia de Medina tienen una alta dependencia de recursos de transferencias y deuda: los ingresos corrientes, es decir los recursos propios generados por los municipios, solamente
representan el 17,1% del total de ingresos en la Provincia. Adicionalmente, se debe mencionar que este nivel es el sexto más bajo entre las provincias de Cundinamarca.

Como complemento a las preguntas anteriores, los actores identificaron los obstáculos que más dificultan la gestión de proyectos provinciales para la competitividad y el desarrollo regional: en la Provincia de Medina, las mayores dificultades son la falta de voluntad política (23%), Corrupción (18%) y la ausencia de mecanismos y/o instrumentos que faciliten la coordinación interinstitucional e intermunicipal (14%).

Figura No.13 Obstáculos para el desarrollo

Obstáculos que más dificultan la gestión de proyectos provinciales para la competitividad y el desarrollo regional

Fuentes: Encuestas realizadas a los provincianos.

Finalmente, se indagó acerca de las instituciones que deberían tener presencia en la región para fomentar proyectos provinciales para la competitividad y el desarrollo regional. Los resultados evidencian que, en la Provincia de Medina, la mayor parte de los actores consideran estratégica una presencia permanente y visible de la Gobernación
de Cundinamarca (18%), las Universidades (16%), las sub-sedes del SENA (14%) y las Corporaciones Ambientales Regionales (14%). La presencia institucional es reclamada para garantizar el avance en la implementación y ejecución de proyectos que fomenten la competitividad y el desarrollo económico regional de Medina.

4.1.2.4. DIAGNÓSTICO DE LA PROVINCIA DE MEDINA EN TÉRMINOS DE FORTALEZAS, DEBILIDADES, OPORTUNIDADES Y AMENAZAS (DOFA)

En esta sección se presenta el diagnóstico de la Provincia de Medina, en términos de Fortalezas, Debilidades, Oportunidades y Amenazas, a la luz del análisis cuantitativo presentado, así como de los resultados del taller de validación con actores locales de la Provincia. En color verde se destacan aquellos factores internos y externos identificados como los más importantes por los actores locales y que sirvieron de base para una ponderación diferencial entre los diferentes aspectos internos y externos considerados.

4.1.2.4 Fortalezas

- Alto potencial ganadero doble propósito en comparación con otras regiones del país.
- Condiciones para la obtención de productos como la Palma Africana, Piña, Caucho, Café, Papaya, Sábila, Cacao, Arroz, Plátano y pastos
- Posición geoestratégica de la provincia con respecto a los mercados cercanos.
 (Villavicencio y otros municipios, Marginal de la Selva, Zona Franca Villa/cio)
- Gran extensión de tierra para producción.
- Posición geoestratégica de la provincia con respecto a los mercados cercanos.
 (Villavicencio y otros municipios, Marginal de la Selva, Zona Franca Villa/cio)
4.1.2.4 Debilidades

- La población de la provincia cuenta con pocas oportunidades laborales y empleos formales.
- Bajo nivel de consumo de bienes y productos por parte de los pobladores locales
- Existe alto déficit de cobertura en servicios público-básicos (Acueducto, Alcantarillado y Energía Eléctrica) en las zonas rurales.
- Ser parte de Cundinamarca y estar tan alejado del Mercado de Bogotá (Cerca de 200 Km.) empeora las condiciones competitivas de la provincia
- No existe infraestructura suficiente (Distritos de Riego, Aeropuerto) para la tecnificación y el apoyo a la producción agrícola.
- Baja presencia de Bancos y entidades financieras, y acceso a crédito
- Falta de Políticas Públicas para la pequeños y medianos productores para el mercado local. (Mercado Ganadero)
- Carencia de Vías y falta de calidad de las mismas en la provincia.

4.1.2.3. Oportunidades

- Cercanía al mercado de Villavicencio, llanos orientales y mercados vecinos.
- Generación de empleo y de recursos para el municipio por la exploración petrolera.
- Ampliación del la oferta agropecuaria (frutales, porcinos, aves, equinos, aromáticas, piscicultura, forestales, hortalizas, flores exóticas)
• La vía alterna al Guavio (Medina, Mambito, Gachalá, Ubalá).

4.1.2.3. Amenazas

• Posibilidad de recorte de transferencias por parte del Gobierno Nacional.
• Inestabilidad de los precios de la panela
• Desaparición del mercado de la panela dada la normatividad INVIMA
• Fuga del recurso humano del municipio hacia otras regiones del país por falta de oportunidades económicas.

El diagnóstico DOFA de la situación competitiva y socioeconómica de Medina permite concluir que, a pesar de la existencia de marcadas debilidades y de la presencia de algunas amenazas, la provincia cuenta con un alto potencial para el diseño de estrategias que fomenten su desarrollo socio-económico. Su importante vocación agrícola en productos como piña, cacao y palma, en ganadería bovina, así como su abundante capital natural, se constituyen en factores determinantes para mejorar la competitividad de la región, sobre la base de criterios de desarrollo productivo con sostenibilidad e inclusión social. Por tanto, resulta fundamental la implementación de estrategias que incluyan las apuestas productivas competitivas, la formación del recurso humano, la inversión en CT&I y una gestión eficiente del territorio, para avanzar en una senda que conduzca hacia la prosperidad.
4.2. Realizar un diagnóstico de la situación actual del aeropuerto de Medina en Cundinamarca para Identificar, las fallas en la infraestructura, los servicios que se prestaban y su nivel de calidad.

4.2.1. Situación Actual del aeropuerto.

Actualmente el aeropuerto ubicado en el Municipio de Medina en Cundinamarca no está en funcionamiento, pues fue cerrado por la Aeronáutica Civil\(^3\) en el 2017, debido a que como muchos otros aeropuertos que también fueron cerrados.

El aeropuerto se encuentra a 1650 m del casco urbano del municipio, la vía de acceso a la pista se encuentra en mal estado debido a que se encuentra totalmente destapada lo cual en tiempos de invierno hace muy difícil el acceso al aeropuerto a continuación en la figura se aprecia la ubicación del municipio de medina y su aeropuerto.

Figura: Ubicación de Aeropuerto de Medina Cundinamarca

![Ubicación de Aeropuerto de Medina Cundinamarca](image)

Fuente: Google Earth 2018.

\(^3\) La Unidad Administrativa Especial de Aeronáutica Civil o Aerocivil es el organismo estatal colombiano encargado del control y regulación de la aviación civil en Colombia.
En la siguiente figura se aprecia la vía de acceso al aeropuerto de medina en Cundinamarca:

Figura 15: Vía de Acceso al Aeropuerto

Fuente: Elaboración Propia Tomada en el sitio.

La evaluación sistemática de un pavimento puede ser definida como la observación periódica del mismo a fin de ubicar irregularidades o fallas en su estructura. La información recogida adecuadamente procesada, permitirá determinar las causas y la magnitud de las fallas a elegir los procesos más adecuados de mantenimiento o rehabilitación.

La Evaluación de un pavimento puede ser efectuada por métodos visuales o instrumentales, las responsabilidades de la evaluación de los pavimentos corresponden a él explotador del aeródromo quien debe mantenerlos en condiciones de satisfacer las necesidades del tránsito con seguridad y comodidad
4.2.2.1 Inspección Visual del Aeropuerto.

Al inspeccionar la pista del aeropuerto se encontraron deficiencias en el manejo de las aguas lluvias la cual se acumula en gran cantidad sobre el pavimento, ocasionando erosión del pavimento existente. En estas circunstancias no cumple en debida forma la función hidráulica de direccionar el flujo de las aguas lluvias.

Figura 16 Pozos de Agua en el manto Asfaltico

Fuente: Propia tomada en el sitio 2018

- Deterioro del Pavimento

En la inspección visual realizada se evidencia que el pavimento en diferentes zonas presenta deterioro de alto grado debido a la falta de mantenimiento, se desconoce el tiempo de vida útil del pavimento con el que se construyó la pista, se puede apreciar el grado de desgaste que presenta la pista en la siguiente figura:
Figura 17 erosión y desprendimiento del pavimento

Fuente: Propia tomada en el sitio

- **Fragmentación Múltiple.**

Son originadas por la fatiga del concreto, provocadas por la repetición de elevadas cargas de tránsito y/o deficiente soporte de la fundación, que se traducen en una capacidad de soporte deficiente del pavimento.
Figura 18 Fragmentación

Fuente: propia tomada en sitio:

Esto ha llegado a ocasionar que la pista pierda su ancho original teniendo en cuenta que las corrientes de aguas lluvias han erosionado los bordes de la misma y siendo remplazada por vegetación.

4.2.4. Erosión del pavimento

En estos Pavimentos la erosión se presenta por el desprendimiento de material pétreo más superficial puede ser provocada por el chorro de las turbinas o por el paso de la rueda de los aviones a gran velocidad. Es determinante, para el desarrollo de esta falta, la falta de adherencia existente entre el material pétreo y el asfalto creando problemas de adhesión entre estos cuyas causas puede ser la fabricación defectuosa del concreto asfáltico durante la construcción del pavimento la utilización de agregados pétreos hidrófilos o de poca afinidad con el asfalto o efectos circunstanciales como derrame de combustibles y lubricantes
Figura: erosión del pavimento

Fuente. Elaboración propia

EL 21 de octubre de 2018 se realizaron 30 encuestas en el municipio a diferentes personas con el fin de determinar los servicios que se prestaban en el aeropuerto antes de ser cerrado por la Aerocivil, toda vez que no fue posible obtener información detallada de los beneficios que prestaba para lo cual se obtuvieron los siguientes resultados:
Como podemos observar el aeropuerto medina Cundinamarca se utilizaba la mayor parte en servicios de trasporte de productos agrícolas y transporte de turistas.

4.3. Diseñar un plan de mejora de la infraestructura, servicios y pistas del aeropuerto de Medina en Cundinamarca.

Este capítulo tiene por objeto la delimitación de la Zona de Servicio del Aeropuerto de Medina en Cundinamarca en el escenario del Desarrollo Previsible propuesto en este documento, así como la definición de las actuaciones previstas en dicho desarrollo para cada subsistema aeroportuario. De este modo se obtendrán, en su caso, las necesidades
de terreno precisas para lograr un desarrollo del aeropuerto que le permita dar servicio a la demanda de transporte aéreo prevista para los horizontes de tráfico considerados.

Así mismo, se llevará a cabo una estimación económica del desarrollo propuesto, teniendo en cuenta no solo las actuaciones directas realizadas sobre las infraestructuras del aeropuerto (ampliaciones, pavimentaciones, construcción de nuevos edificios…), sino también las derivadas de las mismas como la habilitación de nuevos accesos, desplazamiento de viales, rehabilitación/expropiación de terrenos, etc.

Como apartado final, se llevará a cabo una distribución en diferentes fases del desarrollo propuesto, en aquellos casos en los que sea necesario o conveniente para la operatividad del aeropuerto.

4.3.1 DESCRIPCIÓN DE LAS INSTALACIONES

A continuación, se llevará a cabo una descripción detallada de las actuaciones a llevar a cabo en las diferentes infraestructuras e instalaciones del Aeropuerto de Medina, realizándose distinción entre campo de vuelos (pista), plataforma de estacionamiento de aeronaves, Edificio Terminal, y otras instalaciones del aeropuerto.

4.3.2 Campo de vuelos

El campo de vuelos actual del Aeropuerto De Medina en Cundinamarca presenta necesidades relativas a la longitud de pista necesaria para que las aeronaves puedan despegar y aterrizar con la máxima carga de pago, no presentando problemas en el número de operaciones que el campo de vuelos debe ser capaz de sostener durante un periodo de tiempo relativamente prolongado.

El Desarrollo Propuesto supone la ampliación de la longitud total de la pista en 370 m, lo
que supondría alcanzar una longitud total de pista de 1.870 m. Esta ampliación se llevaría a cabo por ambas cabeceras, ampliando la pista 50 m por la cabecera NORTE y 320 m por la cabecera SUR.

Con el fin de adecuar a la normativa técnica, se propone ampliar el ancho de la pista a 30 m (anchura de pista necesaria para aeropuerto de categoría C), adecuar la franja a unas dimensiones de 1.990 x 150 m, de forma que se extienda 75 m hacia cada lado del eje de pista y 60 m desde el umbral de ambas cabeceras, y la construcción de áreas de seguridad de extremo de pista (RESAS) en ambas cabeceras, de 120 m de longitud desde el final de la franja y abarcando una anchura de 150 m. (Figura 2-1).

Figura 2-1. Desarrollo propuesto del campo de vuelos del Aeropuerto de Medina en Cundinamarca

En la cabecera NORTE se propone pavimentar la zona de franja y la RESA de forma que estos 180 m (60 m de franja y 120 m de RESA) puedan emplearse como carrera de despegue por la pista NORTE, tal y como se muestra en la Figura 2-2. En esta zona de la RESA habilitada para la carrera de despegue se propone la construcción de una plataforma de viraje con viraje a ambos lados, tal y como se especifica en el RAC 14.
En esta zona de actuación próxima a la cabecera NORTE los desniveles del terreno son mínimos, tal y como se aprecia en la Figura 2-3, existiendo una diferencia de cotas del orden de 1 m como máximo. Atendiendo a esto, se puede afirmar que los movimientos de tierra necesarios para llevar a cabo la ampliación por esta cabecera no serían muy importantes y, por lo tanto, no llevarían asociado un coste muy elevado.
En la cabecera SUR se propone la ampliación de pista una longitud de 320 m que puedan emplearse tanto en carrera de despegue como en aterrizajes, definiendo a continuación los 60 m de la franja y los 120 m de la RESA, tal y como se muestra en la Figura 2-4. Así mismo, se propone la construcción de una plataforma de viraje en la cabecera con viraje a ambos lados, tal y como se especifica en el RAC 14.

En esta cabecera no resulta necesario la pavimentación de la franja ni de la RESA puesto que no serán utilizados como carrera de despegue. Como añadido, estas zonas (franja + RESA) deberán estar libres de obstáculos que puedan poner en riesgo la integridad de las aeronaves que realicen operaciones en el aeropuerto.

Adicionalmente, la zona de actuación por esta cabecera presenta desniveles no mayores
de 1,5 m, no siendo necesario llevar a cabo grandes movimientos de tierra. La altimetría de esta zona se muestra en la Figura 2-5, apreciándose las diferentes cotas de las líneas de nivel.

Figura 2-4. Desarrollo propuesto del campo de vuelos del Aeropuerto de Medina En Cundinamarca Cabecera SUR

Fuente: Propia
Con la ampliación propuesta, las distancias declaradas de la nueva pista serían las indicadas en la Tabla 2-1.

Tabla 2-1. Distancias declaradas campo de vuelos. Desarrollo Previsible

<table>
<thead>
<tr>
<th>Pista</th>
<th>TORA (m)</th>
<th>ASDA (m)</th>
<th>TODA (m)</th>
<th>LDA (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07</td>
<td>2.050</td>
<td>2.050</td>
<td>2.050</td>
<td>1.870</td>
</tr>
<tr>
<td>25</td>
<td>1.870</td>
<td>1.870</td>
<td>1.870</td>
<td>1.870</td>
</tr>
</tbody>
</table>

Fuente: Propia

Con estas nuevas distancias, se consigue que ninguna de las aeronaves de diseño utilizadas para el pronóstico de la demanda hasta el escenario 3 (2048) tenga limitaciones en su carga de pago (MPL) en las operaciones (aterrizajes y despegues)
que realicen por la cabecera NORTE en el aeropuerto. Tampoco existirían limitaciones en los aterrizajes por la pista SUR; no obstante, sí existiría una pequeña limitación de la carga de pago en las aeronaves más restrictivas (Embraer 170 y ATR 72-500) en los despegues realizados por la pista SUR.

Según las estadísticas de tráfico actuales, casi el 100% de las operaciones de despegue en el Aeropuerto De Medina Cundinamarca se realizan por la pista NORTE, debido mayoritariamente a la orografía del terreno del entorno del aeropuerto, la cual dificulta mucho la maniobra de despegue por la pista SUR al existir numerosas zonas montañosas a lo largo de dicha trayectoria. Esto supone que la limitación a la carga de pago afectaría únicamente a un número muy pequeño de operaciones en el aeropuerto.

Adicionalmente, se ha de tener en cuenta que el PCN de la nueva pista debe ser el adecuado para las aeronaves a las que va a prestar servicio el aeropuerto, de modo que se llevará a cabo la ampliación de la pista de forma que el pavimento cumpla con esta exigencia. Como añadido, se deberán llevar a cabo estudios para determinar el PCN de la pista actual y, en caso de no cumplir con los requisitos necesarios para dar servicio a las aeronaves de diseño tratadas, se deberán llevar a cabo las actuaciones pertinentes para adecuar el pavimento a las necesidades requeridas.

La aeronave que ejerce un mayor peso de su tren principal sobre la pista del Aeropuerto de Medina Cundinamarca es el Embraer 170, con un ACN con categoría F/B de 21.

Tabla 2-2. ACN de aeronave crítica (Pavimento flexible)

<table>
<thead>
<tr>
<th>Aeronave crítica</th>
<th>Resistencia del terreno de fundación del pavimento flexible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A (Alta) CBR=15</td>
</tr>
<tr>
<td>E170</td>
<td>20</td>
</tr>
</tbody>
</table>
En resumen, con objeto de que la flota de diseño utilizada en el de Medina Cundinamarca pueda operar sin ningún tipo de restricción el PCN de la pista debe ser superior o igual al ACN indicado en la Tabla 2-2.

Para lograr alcanzar este PCN se propone llevar a cabo una rehabilitación de la pista actual, consiguiéndose un pavimento que presente la estructura mostrada en la Tabla 2-3. Esta rehabilitación del pavimento se llevará a cabo asimismo en la calle de rodaje, para la cual se plantea el reemplazo total de la carpeta asfáltica y reposición en el espesor total y para la pista se plantea realizar un fresado y reposición de la carpeta asfáltica de 5 cm, presentando la misma estructura que para la pista.

Tabla 2-3. Estructura del pavimento de la rehabilitación de la pista y la calle de rodaje

<table>
<thead>
<tr>
<th>Número de Capa</th>
<th>Tipo de capa</th>
<th>Especificación</th>
<th>Módulo (MPa)</th>
<th>Espesor (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overlay Concreto Asfáltico</td>
<td>P-401</td>
<td>1379</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Concreto Asfáltico existente</td>
<td>P-401</td>
<td>1172</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Capa granular</td>
<td>P-209</td>
<td>207</td>
<td>350</td>
</tr>
<tr>
<td>4</td>
<td>Capa granular</td>
<td>P-154</td>
<td>175</td>
<td>600</td>
</tr>
<tr>
<td>5</td>
<td>Subrasante</td>
<td></td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>

Adicionalmente, para los tramos de ampliación de la pista (en longitud y en anchura) se propone llevar a cabo un nuevo pavimento que presente la estructura plasmada en la Tabla 2-4.
Tabla 2-4. Estructura del pavimento de la ampliación de la pista

<table>
<thead>
<tr>
<th>Número de Capa</th>
<th>Tipo de capa</th>
<th>Especificación</th>
<th>Módulo (MPa)</th>
<th>Espesor (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Concreto Asfáltico</td>
<td>P-401</td>
<td>1379</td>
<td>101.6</td>
</tr>
<tr>
<td>2</td>
<td>Capa granular</td>
<td>P-209</td>
<td>384</td>
<td>203.2</td>
</tr>
<tr>
<td>3</td>
<td>Capa granular</td>
<td>P-154</td>
<td>129</td>
<td>463.8</td>
</tr>
<tr>
<td>4</td>
<td>Subrasante</td>
<td></td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Propia

Posteriormente a la rehabilitación/ampliación del pavimento actual el cual se realizará dentro del Horizonte 1 de estudio (2018-2028), se llevará a cabo un mantenimiento y rehabilitación del pavimento durante los horizontes posteriores, llevando a cabo fresados de su superficie e incrementos de grosor en alguna de sus capas más superficiales.

En lo referente al drenaje del campo de vuelos, éste deberá contar con un sistema de drenaje adecuado, basado en canaletas pavimentadas que rodearán toda la pista y asegurarán la correcta evacuación de aguas. Los drenajes deberán estar pavimentados, llevándose a cabo un mantenimiento y limpieza continuada de los mismos. En el caso de la pista, podrían utilizarse los drenajes existentes en la situación actual, llevándose a cabo su pavimentación y ampliándose de manera que abarquen la longitud total de la pista. El sistema de drenaje de campo de vuelos propuesto se muestra en la Figura 2-6.
1.1.1 **Superficies Limitadoras de Obstáculos**

El Desarrollo Propuesto de la pista supone el diseño de unas Superficies Limitadoras de Obstáculos de acuerdo a la categoría de la pista y de acuerdo al tipo de aproximación realizada en el aeropuerto. El Aeropuerto De Medina en Cundinamarca presenta una pista con número de clave 3, con aproximaciones visuales por ambas pistas.

A continuación, se describen las características físicas de cada una de las superficies que componen las Superficies Limitadoras de Obstáculos.

4.3.2.1 Superficie de aproximación La superficie de aproximación define la parte del espacio aéreo que debería mantenerse libre de obstáculos para proteger a los aviones durante la fase final de la maniobra de aproximación para el aterrizaje.
En el Aeropuerto De Medina en Cundinamarca se ha diseñado una superficie de aproximación visual por cada una de las pistas utilizadas, es decir, existe una superficie de aproximación por la pista Norte y otra para la pista Sur.

4.3.2.1.1 Superficie de aproximación RWY NORTE

La superficie de aproximación de la pista RWY NORTE presenta las siguientes características físicas (Figura 2-7):

- Un borde interior con una longitud de 150 m (75 m a cada lado del eje de la pista), horizontal y perpendicular a la prolongación del eje de pista, situándose a una distancia de 60 m antes del umbral NORTE.
- Dos lados que parten de los extremos del borde interior y divergen uniformemente con un ángulo de 10 % respecto a la prolongación del eje de pista.
- Al tratarse de una aproximación visual, esta superficie dispone de una única sección en la que el borde exterior es paralelo al borde interior y se encuentra ubicado a una distancia del mismo de 3.000 m.
- La elevación del borde interior es de 1.280,45 m, correspondiente a la del punto medio del umbral NORTE.
- Por último, la pendiente del plano inclinado definido por la superficie de aproximación desde el borde interior es de 3,33 %.
4.3.2.1.2 Superficie de aproximación RWY SUR

La superficie de aproximación de la pista RWY SUR presenta las siguientes características físicas (Figura 2-8):

- Un borde interior con una longitud de 150 m (75 m a cada lado del eje de la pista), horizontal y perpendicular a la prolongación del eje de pista, situándose a una distancia de 60 m antes del umbral SUR.
• Dos lados que parten de los extremos del borde interior y divergen uniformemente con un ángulo de 10 % respecto a la prolongación del eje de pista.

• Al tratarse de una aproximación visual, esta superficie dispone de una única sección en la que el borde exterior es paralelo al borde interior y se encuentra ubicado a una distancia del mismo de 3.000 m.

• La elevación del borde interior es de 1.277,56 m, correspondiente a la del punto medio del umbral SUR.

• Por último, la pendiente del plano inclinado definido por la superficie de aproximación desde el borde interior es de 3,33 %.

4.3.2.2 Superficie de transición

La superficie de transición, al igual que la superficie de aproximación, define la parte del espacio aéreo que debería mantenerse libre de obstáculos para proteger a los aviones durante la fase final de la maniobra de aproximación para el aterrizaje. Se trata de una superficie compleja que se extiende a lo largo del borde de la franja y parte de la superficie de aproximación, de pendiente ascendente y hacia afuera hasta la superficie horizontal interna.

En el Aeropuerto De Medina en Cundinamarca se ha diseñado una superficie de transición por cada una de las pistas utilizadas, es decir, existe una superficie de transición para la pista NORTE y otra para la pista SUR.

4.3.2.2.1 Superficie de transición RWY NORTE

La superficie de transición de la pista RWY NORTE presenta las siguientes características físicas (Figura 2-9):
- Un borde inferior que comienza en la intersección del borde de la superficie de aproximación con la superficie horizontal interna y que se extiende siguiendo el borde de la superficie de aproximación hasta el borde interior de la superficie de aproximación y desde allí, por toda la longitud de la franja, paralelamente al eje de pista.
- Un borde superior situado en el plano de la superficie horizontal interna a una altura de 45 m del ARP del aeródromo (1.280,45 m), situándose a 1.322,45 m.
- La elevación de los distintos puntos que conforman el borde inferior es igual a la elevación de los puntos correspondientes más próximos sobre el eje de la pista o de su prolongación.
- La pendiente de la superficie de transición se mide en un plano vertical perpendicular al eje de la pista siendo en este caso de 14,3 %.

Figura 2-9. Superficie de transición RWY NORTE

Fuente: Propia

4.3.2.2.2 Superficie de transición RWY SUR

La superficie de transición de la pista RWY SUR presenta las siguientes características físicas (Figura 2-10):

- Un borde inferior que comienza en la intersección del borde de la superficie de
aproximación con la superficie horizontal interna y que se extiende siguiendo el borde de la superficie de aproximación hasta el borde interior de la superficie de aproximación y desde allí, por toda la longitud de la franja, paralelamente al eje de pista.

- Un borde superior situado en el plano de la superficie horizontal interna a una altura de 45 m del ARP del aeródromo (1.280,45 m), situándose a 1.322,45 m.
- La elevación de los distintos puntos que conforman el borde inferior es igual a la elevación de los puntos correspondientes más próximos sobre el eje de la pista o de su prolongación.
- La pendiente de la superficie de transición se mide en un plano vertical perpendicular al eje de la pista siendo en este caso de 14,3 %.

Figura 2-10. Superficie de transición RWY SUR

Fuente: Propia

4.3.2.3 Superficie de ascenso en el despegue. La superficie de ascenso en el despegue proporciona la protección para las aeronaves durante el despegue, indicando qué obstáculos deberían eliminarse, si ello es posible, y señalarse o iluminarse si la eliminación es imposible. Se trata de un plano inclinado u otra superficie situada más allá
del extremo de una pista o zona libre de obstáculos.

En el Aeropuerto de Medina Cundinamarca se ha diseñado una superficie de ascenso en el despegue por cada una de las pistas utilizadas, es decir, existe una superficie de ascenso en el despegue para la pista NORTE y otra para la pista SUR. Así mismo, se han diseñado sendas trayectorias en viraje, con el fin de reducir al máximo la vulneración originada por el terreno sobre esta superficie.

4.3.2.3.1 Superficie de ascenso en el despegue RWY NORTE

La superficie de ascenso en el despegue de la pista RWY NORTE presenta las siguientes características físicas (Figura 2-11)

- Un borde interior con una longitud de 180 m (90 m a cada lado del eje de la pista), horizontal y perpendicular a la prolongación del eje de pista, situándose a una distancia de 60 m desde el extremo de la pista.
- Dos lados que parten de los extremos del borde interior y divergen uniformemente con un ángulo de 12,5 % respecto a la prolongación del eje de pista, hasta un ancho del borde exterior de 1.800 m.
- La distancia entre el borde interior y el borde exterior es de 15.000 m.
- La elevación del borde interior es de 1.277,56 m, correspondiente a la del punto medio del umbral SUR.
- Por último, la pendiente del plano inclinado definido por la superficie de aproximación desde el borde interior es de 2 %.
- La trayectoria diseñada para el diseño de la superficie de ascenso en el despegue por la pista NORTE, permite sobrevolar el valle existente en la zona, evitando las cotas de terreno de mayor elevación. Elimina completamente las vulneraciones
que dicho terreno originaría sobre la superficie.

Figura 2-11. Superficie de ascenso en el despegue RWY NORTE

Fuente: Propia

4.3.2.3.2 Superficie de ascenso en el despegue RWY SUR

La superficie de ascenso en el despegue de la pista RWY SUR presenta las siguientes características físicas (Figura 2-12):

- Un borde interior con una longitud de 180 m (90 m a cada lado del eje de la pista), horizontal y perpendicular a la prolongación del eje de pista, situándose a una distancia de 60 m desde el extremo de la pista.
- Dos lados que parten de los extremos del borde interior y divergen uniformemente con un ángulo de 12,5 % respecto a la prolongación del eje de pista, hasta un ancho del borde exterior de 1.800 m.
- La distancia entre el borde interior y el borde exterior es de 15.000 m.
- La elevación del borde interior es de 1.280,45 m, correspondiente a la del punto medio del umbral NORTE.
- Por último, la pendiente del plano inclinado definido por la superficie de aproximación desde el borde interior es de 2%.
La trayectoria diseñada para el diseño de la superficie de ascenso en el despegue por la pista SUR, minimiza las vulneraciones originadas por el terreno sobre esta superficie, sin llegar a eliminarlas. En dicha maniobra existen importantes limitaciones debido al terreno existente.
4.3.2.4 Superficie horizontal interna

La finalidad de la superficie horizontal interna es proteger el espacio aéreo para el circuito visual dentro del cual la aeronave deba volar antes de aterrizar, posiblemente después de descender a través de las nubes sobre una instalación alineada con una pista distinta de la utilizada para el aterrizaje. Se trata de una superficie situada en un plano horizontal sobre el aeródromo y sus alrededores.

En el Aeropuerto de Medina Cundinamarca se ha diseñado una superficie horizontal interna a una altura de 45 m sobre el ARP del aeropuerto, es decir, a una elevación ortométrica de 1.322,45 m. Así mismo, se ha diseñado con una planta en forma de hipódromo, en la que los puntos de referencia para el trazado de los arcos se localizan en el punto de intersección entre la franja y el eje de la pista. Los radios de dichos arcos de circunferencia son de 4.000 m (Figura 2-13).
4.3.2.4.1 Superficie cónica

La superficie cónica se trata de una superficie de pendiente ascendente y hacia afuera que se extiende desde la periferia de la superficie horizontal interna. Presenta las siguientes características físicas (Figura 2-14):

- Un borde inferior que coincide con la periferia de la superficie horizontal interna a una elevación de 1322,45 m.
- Un borde superior situado a 75 m de altura sobre la superficie horizontal interna.
- La pendiente de la superficie cónica es de un 5 %, midiéndose en un plano vertical perpendicular a la periferia de la superficie horizontal interna.
4.3.2.5. *Modelo Digital de Alturas Libres (MDAL)* Con el fin de poder identificar las áreas en las que existe un menor margen de altura libre existente entre las SLO y el terreno, se ha diseñado para el Aeropuerto De Medina en Cundinamarca un Modelo Digital de Alturas Libres (MDAL). Dicho modelo (Figura 2-15) refleja mediante la siguiente escala de color, la altura libre existente entre la superficie terrestre y las SLO, habiéndose diseñado a partir de estas superficies y el Modelo Digital de Superficie (MDS) elaborado para el Aeropuerto de Medina en Cundinamarca.

Figura 2-15 Modelo Digital de Alturas Libres (MDAL)

Fuente: propia

Se tomó la imagen área del banco de datos de la aeronáutica civil y se procesó en el programa GEOMATIC A 2015 Y ERDAS IMAGINE 2015, para otorectificarla y obtener los datos de altura por medio de fotogrametría digital.

Tal y como se puede observar en la Figura 2-15 anterior, existen zonas en las que las
Superficies Limitadoras de Obstáculos se encuentran vulneradas por el propio terreno y los elementos que se encuentran sobre él (zonas en rojo). La superficie de ascenso en el despegue RWY SUR, presenta importantes vulneraciones tanto del terreno existente como de los elementos sobre el mismo. Así mismo la superficie horizontal interna y la superficie cónica se encuentran vulneradas tanto al norte como al sur del campo de vuelos.

En la parte próxima a la pista, destacan varias masas arbóreas que producen vulneraciones sobre las superficies de aproximación, transición y ascenso en el despegue definidas (zonas en rojo), tal y como se refleja en la Figura 2-16:

4.3.3 Ayudas a la navegación

Con el objetivo de ayudar a las aeronaves en sus maniobras de aproximación al aeropuerto, se propone la instalación de un sistema visual indicador de pendiente de aproximación (PAPI) a 300 m del umbral THR SUR. Esta nueva instalación deberá cumplir con todos los requisitos técnicos plasmados en el RAC 14 en lo referente a distancias y reglaje. De esta forma, las aeronaves podrán servirse de esta ayuda a la navegación para realizar las maniobras de aproximación al aeropuerto por esta cabecera.

La ubicación del nuevo sistema visual indicador de pendiente de aproximación (PAPI) se muestra en la Figura 2-18.
4.3.4 Plataforma de estacionamiento de aeronaves

La plataforma de estacionamiento de aeronaves del Aeropuerto De Medina en Cundinamarca presenta un déficit en el número de puestos de estacionamiento necesarios para hacer frente a la demanda de servicio. El Desarrollo Propuesto se centra en la construcción de una nueva plataforma rehabilitando y ampliando la actual y aprovechando la superficie utilizada por la plataforma en la situación actual.

Se propone la construcción de una plataforma de estacionamiento de aeronaves con capacidad para tres puestos de estacionamiento autónomos tipo C, de forma que las aeronaves estacionen de forma perpendicular a la pista y enfrentadas al nuevo Edificio Terminal. Estos puestos de estacionamiento no solo podrán ser utilizados por aeronaves tipo C (Embraer 170, ATR 72-600/500, ATR 42-500) sino también por aeronaves de clases inferiores (tipo B1 y tipo A). Esta distribución de plataforma permitirá aumentar la
comodidad de los pasajeros al poder llevarse a cabo el embarque y desembarque de las aeronaves de una manera rápida y directa, sin tener que recorrer largas distancias desde las puertas de embarque hasta las aeronaves. Del mismo modo, se mejorará la operativa de las compañías aéreas que operen en el aeropuerto al poder llevar a cabo la carga y descarga del equipaje y de las mercancías a poca distancia del Edificio Terminal o de la nueva Terminal de Carga.

La superficie total de la nueva plataforma de estacionamiento de aeronaves sería de unos 13.100 m2. Las dimensiones y diseño de la nueva plataforma se muestran en el esquema plasmado en la Figura 2-19, así como las dimensiones de los puestos de estacionamiento propuestos.

- Plataforma propuesta para aeropuerto de medina en Cundinamarca

Figura 2-19. Esquema y diseño de la nueva plataforma del Aeropuerto De Medina en Cundinamarca

Fuente: Propia
Con el objetivo de mejorar la compatibilidad de puestos en plataforma, el puesto de estacionamiento tipo C situado más al suroeste de la superficie de la plataforma sería compatible con dos puestos de estacionamiento tipo B1, siendo uno de ellos, a su vez, compatible con un puesto de estacionamiento para helicópteros de pequeño tamaño. Esta compatibilidad de puestos de estacionamiento permitiría tener una nueva configuración de plataforma de 2 puestos tipo C + 2 puestos tipo B1 siempre que fuera necesario y no existiera la necesidad de dar servicio a tres aeronaves tipo C de forma simultánea. El puesto de estacionamiento tipo C situado más al noreste sería compatible con un puesto de estacionamiento para helicópteros de grandes dimensiones (Black Hawk). Para mejorar la operatividad del aeropuerto, la aeronave carguera estacionaría en el puesto de estacionamiento tipo C situado al noreste de la plataforma, siendo el puesto que más cerca se ubica de la nueva Terminal de Carga.

Al igual que ocurría en el caso de la pista, la nueva plataforma de estacionamiento de aeronaves deberá tener el PCN adecuado para las aeronaves a las que va a dar servicio. Como ya se comentó previamente, la aeronave que ejerce un mayor peso de su tren principal sobre la pista del Aeropuerto De Medina en Cundinamarca es el Embraer E-170, con un ACN con categoría F/B de 21. Con objeto de que la flota de diseño utilizada en el Aeropuerto De Medina en Cundinamarca pueda operar sin ningún tipo de restricción, el PCN de la pista debe ser superior o igual al ACN indicado.

Para el caso particular de la plataforma de estacionamiento de aeronaves, para lograr alcanzar este PCN adecuado, se propone llevar a cabo la rehabilitación de la plataforma existente de forma que se obtenga un pavimento con la estructura plasmada en la Tabla 2-5.
Tabla 2-5. Estructura del pavimento para construcción de la plataforma.

<table>
<thead>
<tr>
<th>Número de capa</th>
<th>Tipo de capa</th>
<th>Espesor (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Losa concreto hidráulico P-501</td>
<td>260</td>
</tr>
<tr>
<td>2</td>
<td>Mezcla asfáltica P-401</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Base tratada con cemento P-304</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>Material granular existente</td>
<td>600</td>
</tr>
</tbody>
</table>

Fuente: propia

4.3.5 Edificio Terminal

El Desarrollo Propuesto para el Edificio Terminal consiste en la construcción de un Nuevo Edificio Terminal de una única planta, con una superficie de 1.239 m², tal y como se observa en la Figura 2-21. El diseño del Nuevo Edificio Terminal se ha realizado de manera que no se produzcan mezclas entre los pasajeros de salida y llegada, favoreciendo de esta manera la operativa; no obstante, existen zonas públicas que se deben entender desde un punto de vista común al no existir una separación física entre ellas, como son los vestíbulos de salidas y llegadas.
Para optimizar el nivel de servicio ofrecido a los pasajeros, se ha tenido en cuenta el punto de vista de los mismos en los procesos de salidas y llegadas.

Con carácter general, se han realizado estudios del terreno concluyéndose que la capacidad portante del mismo resulta suficiente si se tiene en cuenta que las estructuras proyectadas (de un piso).

Atendiendo a las necesidades propias de la operativa del aeropuerto, se han reservado cuatro locales para la ubicación de equipos eléctricos, policía, sanidad y una bodega, a los cuales se accede desde el vestíbulo de salidas.

Desde el vestíbulo de salidas, los pasajeros pueden acudir a alguno de los 3 mostradores de facturación propuestos. Para poder ofrecer un nivel de servicio óptimo en facturación
se ha reservado una superficie de 132 m2. Detrás de los mostradores de facturación se han reservado dos zonas para tareas propias del aeropuerto, una destinada a la policía y otra destinada a posibles concesiones para equipos handling de tratamiento de equipajes.

Por último, para satisfacer las necesidades propias de administración y gestión del aeropuerto, se ha reservado una zona para oficinas y administración de la infraestructura, a la cual se accede desde el vestíbulo de llegadas.

4.3.6 Servicio de Salvamento y Extinción de Incendios (SSEI)

Dado que en el Aeropuerto De Medina en Cundinamarca se prevé que se realicen operaciones comerciales, se requiere dotar al mismo de un Servicio de Salvamento y Extinción de Incendios (SSEI). Según RAC 14, el nivel de protección que ha de proporcionarse en un aeropuerto abierto a la operación pública a efectos de salvamento y extinción de incendios será apropiado a la categoría del aeródromo, que se establecerá utilizando los principios estipulados en las tablas 14.6.5. y 14.6.6.del RAC 14, excepto que, si el número de movimientos de aviones de la categoría más elevada que normalmente utilizan el aeródromo es menos de 700 durante los tres meses consecutivos de mayor actividad, el nivel de protección que se proporcionará será un nivel que no se encuentre más de una categoría por debajo de la categoría fijada.

La categoría del aeródromo para efectos de salvamento y extinción de incendios se determinará con arreglo a la Tabla 9-1S, incluida y se basará en la longitud y anchura del avión de mayor tamaño que normalmente utilizará el aeródromo.
4.3.7 Otras instalaciones

Además de las infraestructuras propuestas previamente, se propone llevar a cabo la construcción de un centro de acopios de 23 m2 en el Aeropuerto De Medina en Cundinamarca de forma que se facilite el almacenamiento y recogida de residuos en el aeropuerto. Se propone su ubicación al oeste de la plataforma de estacionamiento de aeronaves, en las proximidades del acceso directo a plataforma desde el lado tierra y cercano al vallado perimetral de separación lado aire-lado tierra, de forma que sea posible establecer un acceso directo al mismo desde el exterior del aeropuerto y facilitar así la recogida de residuos.
Igualmente, la construcción de calle de rodaje que comunicara el terminal propuesto y la pista, calle de comunicación para el vehículo de bomberos y de salvamento y rescate que comunicara el cuartel SSEI y la pista.

4.3.7 Presupuesto detallado para la formulación del plan de mejora de la infraestructura y servicios.

"FORMULACION DE PROYECTO DE ADECUACION DE LA INFRAESTRUCTURA DEL AEROPUERTO DE MEDINA EN CUNDINAMARCA, QUE PERMITA LA MEJORA DE SU PISTA DE ATERRIZAJE, Y DE LOS SERVICIOS QUE SE PRESTAN EN UN TERMINAL AÉREO A NIVEL NACIONAL."

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCION</th>
<th>UNID</th>
<th>C</th>
<th>ANT.</th>
<th>VR. UNITAR</th>
<th>VR. TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. CONSTRUCCION CALLE DE RODAJE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.033.511.782</td>
</tr>
<tr>
<td>1,1</td>
<td>LOCALIZACION Y REPLANTEO (INCLUYE TOPOGRAFIA Y ENTREGA DE PLANOS RECORD)</td>
<td>M2</td>
<td>29.64</td>
<td>0.33</td>
<td>139.00</td>
<td>4.120.006</td>
</tr>
<tr>
<td>1,2</td>
<td>DEMOLICION DE PARTES EN CONCRETO ASFALTICO ESPESOR VARIABLE, INCLUYE CORTE Y RETIRO DE SOBRANTES DE ACUERDO A INSTRUCCIONES DEL SUPERVISOR</td>
<td>M2</td>
<td>128.9</td>
<td>2</td>
<td>13.625.00</td>
<td>1.756.535</td>
</tr>
<tr>
<td>1,3</td>
<td>EXCAVACIONES VARIAS SIN CLASIFICAR (INCLUYE RETIRO DE SOBRANTES DE ACUERDO A INSTRUCCIONES DEL SUPERVISOR)</td>
<td>M3</td>
<td>64.45</td>
<td></td>
<td>30.000.00</td>
<td>1.933.500</td>
</tr>
<tr>
<td>1,4</td>
<td>EXCAVACION MECANICA PARA ESTRUCTURA DE PAVIMENTO INCLUYE (COMPACTACION DEL TERRENO)</td>
<td>M3</td>
<td>2.432</td>
<td>0.11</td>
<td>5.778.00</td>
<td>14.052.732</td>
</tr>
<tr>
<td>1,5</td>
<td>TERRAPLEN EN BASE GRANULAR</td>
<td>M3</td>
<td>43.62</td>
<td>2.00</td>
<td>63.294.00</td>
<td>2.761.010.868</td>
</tr>
<tr>
<td>1,6</td>
<td>SUMINISTRO E INSTALACION SUBBASE GRANULAR SEGÚN ESPECIFICACION TECNICA FAA P.154</td>
<td>M3</td>
<td>729.6</td>
<td>3</td>
<td>60.349.00</td>
<td>44.032.441</td>
</tr>
<tr>
<td>1,7</td>
<td>SUMINISTRO E INSTALACION BASE GRANULAR SEGÚN ESPECIFICACION TECNICA FAA P.208</td>
<td>M3</td>
<td>486.4</td>
<td>1</td>
<td>63.294.00</td>
<td>30.786.835</td>
</tr>
<tr>
<td>1,8</td>
<td>SUMINISTRO E INSTALACION DE GEOTEXTIL REP AV 400 NT</td>
<td>M2</td>
<td>29.64</td>
<td>0.33</td>
<td>5.305.00</td>
<td>157.241.951</td>
</tr>
<tr>
<td>1,9</td>
<td>IMPRIMACION NORMA TECNICA FAA - P - 602 (INCLUYE SUMINISTRO, BARRIDO DE SUPERFICIE Y RIEGO)</td>
<td>M2</td>
<td>29.64</td>
<td>0.33</td>
<td>3.500.00</td>
<td>103.741.155</td>
</tr>
<tr>
<td>1,10</td>
<td>RIEGO DE LIGA NORMA TECNICA FAA-P-603 (INCLUYE SUMINISTRO, BARRIDO DE SUPERFICIE Y RIEGO)</td>
<td>M2</td>
<td>29.64</td>
<td>0.33</td>
<td>3.500.00</td>
<td>103.741.155</td>
</tr>
<tr>
<td>1,11</td>
<td>CONCRETO ASFALTICO NORMA TECNICA FAA- P401</td>
<td>M3</td>
<td>3.734</td>
<td>0.67</td>
<td>484.941.00</td>
<td>1.811.094.604</td>
</tr>
<tr>
<td></td>
<td>2. RENIVELACION FRANJAS DE PISTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.341.438.866</td>
</tr>
<tr>
<td>2,1</td>
<td>MOVIMIENTO DE TIERRA CON EQUIPO MECANICO</td>
<td>M3</td>
<td>1NO RTE.</td>
<td>549.7</td>
<td>11.249.00</td>
<td>1.209.826.575</td>
</tr>
<tr>
<td>2,2</td>
<td>RENIVELACION DE FRANJAS CON BASE GRANULAR</td>
<td>M3</td>
<td>76.39</td>
<td>1.05</td>
<td>63.294.00</td>
<td>4.835.095.119</td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Medida</td>
<td>Importe/Unidad</td>
<td>Subtotal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Conformación Mecánica para Nivelación y Compactación (Incluye Localización, Replanteo, Topografía, Entrega de Planos Record y Arreglos de Estructuras Existentes)</td>
<td>M2</td>
<td>436.6 84,80</td>
<td>1.912,00</td>
<td>834.941.338</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Riego de Liga con Emulsión Asfáltica CRR-1 (Suministro, BARRIDO SUPERFICIE Y RIEGO EN FRANJAS DE SEGURIDAD)</td>
<td>M2</td>
<td>436.6 84,80</td>
<td>1.057,00</td>
<td>461.575.834</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Localización y Replanteo (Incluye Topografía y Entrega de Planos Record)</td>
<td>M2</td>
<td>49.56 4,93</td>
<td>139,00</td>
<td>6.889.525</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Demolición de Partes en Concreto Asfáltico Espesor Variable, Incluye Corto y Retiro de Sobrantes de Acuerdo a Instrucciones del Supervisor</td>
<td>M2</td>
<td>1.272 ,00</td>
<td>13.625,00</td>
<td>17.331.000</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Excavaciones Varias Sin Clasificar (Incluye Retiro de Sobrantes de Acuerdo a Instrucciones del Supervisor)</td>
<td>M3</td>
<td>381.6 0</td>
<td>30.000,00</td>
<td>11.448.000</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Excavación Mecánica para Estructura de Pavimento Incluye (Compactación del Terreno)</td>
<td>M3</td>
<td>30.73 0,25</td>
<td>5.778,00</td>
<td>177.559.385</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Presado y Nivelación (Incluye Transporte de Maquinaria) (Inviás ART 460)</td>
<td>ML</td>
<td>100.0 0,00</td>
<td>4.955,00</td>
<td>495.500</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Sellado de Grietas con Asfalto Modiﬁcado con Polímeros Tipo 3</td>
<td>ML</td>
<td>14.86 9,46</td>
<td>60.349,00</td>
<td>897.357.042</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Suministro e Instalación Subbase Granular Según Especiﬁcación Técnica FAA P-154</td>
<td>M3</td>
<td>9.912 ,97</td>
<td>63.294,00</td>
<td>627.431.523</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Suministro e Instalación Base Granular Según Especiﬁcación Técnica FAA P-208</td>
<td>M3</td>
<td>153.9 64,93</td>
<td>5.305,00</td>
<td>816.783.954</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Suministro e Instalación de Geotextil Repav 400 NT</td>
<td>M2</td>
<td>153.9 64,93</td>
<td>3.500,00</td>
<td>538.877.255</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Imprimación Norma Técnica FAA - P - 602 (Incluye Suministro, BARRIDO DE SUPERFICIE Y RIEGO)</td>
<td>M2</td>
<td>153.9 64,93</td>
<td>3.500,00</td>
<td>538.877.255</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>Riego de Liga Norma Técnica FAA-P-603</td>
<td>M2</td>
<td>153.9 64,93</td>
<td>3.500,00</td>
<td>538.877.255</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>Concreto Asfáltico Norma Técnica FAA- P401</td>
<td>M3</td>
<td>17.26 0,78</td>
<td>484.941,00</td>
<td>8.370.459.914</td>
<td></td>
</tr>
</tbody>
</table>

3. ADECUACIÓN Y AMPLIACIÓN DE PISTAS

12.299.023.697

3.1 Localización y Replanteo (Incluye Topografía y Entrega de Planos Record) | M2 | 49.56 4,93 | 139,00 | 6.889.525

3.2 Demolición de Partes en Concreto Asfáltico Espesor Variable, Incluye Corto y Retiro de Sobrantes de Acuerdo a Instrucciones del Supervisor | M2 | 1.272 ,00 | 13.625,00 | 17.331.000

3.3 Excavaciones Varias Sin Clasificar (Incluye Retiro de Sobrantes de Acuerdo a Instrucciones del Supervisor) | M3 | 381.6 0 | 30.000,00 | 11.448.000

3.4 Excavación Mecánica para Estructura de Pavimento Incluye (Compactación del Terreno) | M3 | 30.73 0,25 | 5.778,00 | 177.559.385

3.5 Presado y Nivelación (Incluye Transporte de Maquinaria) (Inviás ART 460) | ML | 100.0 0,00 | 4.955,00 | 495.500

3.6 Sellado de Grietas con Asfalto Modiﬁcado con Polímeros Tipo 3 | ML | 14.86 9,46 | 60.349,00 | 897.357.042

3.7 Suministro e Instalación Subbase Granular Según Especiﬁcación Técnica FAA P-154 | M3 | 9.912 ,97 | 63.294,00 | 627.431.523

3.8 Suministro e Instalación Base Granular Según Especiﬁcación Técnica FAA P-208 | M3 | 153.9 64,93 | 5.305,00 | 816.783.954

3.9 Suministro e Instalación de Geotextil Repav 400 NT | M2 | 153.9 64,93 | 3.500,00 | 538.877.255

3.10 Imprimación Norma Técnica FAA - P - 602 (Incluye Suministro, BARRIDO DE SUPERFICIE Y RIEGO) | M2 | 153.9 64,93 | 3.500,00 | 538.877.255

3.11 Riego de Liga Norma Técnica FAA-P-603 | M2 | 153.9 64,93 | 3.500,00 | 538.877.255

3.12 Concreto Asfáltico Norma Técnica FAA- P401 | M3 | 17.26 0,78 | 484.941,00 | 8.370.459.914

4. ADECUACIÓN ÁREAS DE SEGURIDAD EXTREMO DE PISTA CABECERA

162.710.895

4.1 Localización y Replanteo (Incluye Topografía y Entrega de Planos Record) para Construcción de Via Perimetral y Anexos | M2 | 3.940 ,00 | 2.275,00 | 8.963.500

4.2 Movimiento de Tierra con Equipo Mecánico | M3 | 1.781 ,80 | 11.249,00 | 20.043.468

4.3 Relleno Vibro Compactado Con Base Granular | M3 | 478,8 0 | 63.294,00 | 30.305.167

4.4 Construcción de Gaviones (Incluye Geotextil) | M3 | 450,0 0 | 125.012,00 | 56.255.400

4.5 Rehabilitación y Construcción Via Perimetral Ancho = 4,0 m (Incluye Excavación Conformación, Nivelación, Compactación del Terreno Existente, Instalación Base Granular y Riego de Liga) | ML | 880,0 0 | 53.572,00 | 47.143.360

5. ADECUACIÓN ÁREAS DE SEGURIDAD EXTREMO DE PISTA CABECERA

2.213.213.277
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1,1</td>
<td>LOCALIZACION Y REPLANTEO (INCLUYE TOPOGRAFÍA Y ENTREGA DE PLANOS RECORD)</td>
<td>M2</td>
<td>11.15 8,36</td>
</tr>
<tr>
<td>5.1,2</td>
<td>EXCAVACION MECANICA PARA ESTRUCTURA DE PAVIMENTO INCLUYE COMPACTACION DEL TERRENO</td>
<td>M3</td>
<td>6.918 6,18</td>
</tr>
<tr>
<td>5.1,3</td>
<td>SUMINISTRO E INSTALACION SUBBASE GRANULAR SEGUN ESPECIFICACION TECNICA FAA P-154</td>
<td>M3</td>
<td>3.347 3,51</td>
</tr>
<tr>
<td>5.1,4</td>
<td>SUMINISTRO E INSTALACION BASE GRANULAR SEGUN ESPECIFICACION TECNICA FAA P-208</td>
<td>M3</td>
<td>2.231 2,67</td>
</tr>
<tr>
<td>5.1,5</td>
<td>SUMINISTRO E INSTALACION DE GEOTEXTIL REPAV 400 NT</td>
<td>M2</td>
<td>11.15 8,36</td>
</tr>
<tr>
<td>5.1,6</td>
<td>IMPRIMACION NORMA TECNICA FAA - P - 602 (INCLUYE SUMINISTRO, BARRIDO DE SUPERFICIE Y RIEGO)</td>
<td>M2</td>
<td>11.15 8,36</td>
</tr>
<tr>
<td>5.1,7</td>
<td>RIEGO DE LIGA NORMA TECNICA FAA P-603</td>
<td>M2</td>
<td>11.15 8,36</td>
</tr>
<tr>
<td>5.1,8</td>
<td>CONCRETO ASFALTICO NORMA TECNICA FAA P401</td>
<td>M3</td>
<td>1.339 1,00</td>
</tr>
<tr>
<td>5.1,9</td>
<td>FILTRO EN GEOTEXTIL (INCLUYE GEOTEXTIL NT 1600, TUBERIA PERFORADA DE 4”, MATERIAL GRANULAR DE 1” CON SUS RESPECTIVOS ACCESORIOS PARA SU ADECUADA INSTALACION) PARALELO AL CANAL DE A.L</td>
<td>ML</td>
<td>1.400 1,00</td>
</tr>
<tr>
<td>5.1,10</td>
<td>SUMINISTRO E INSTALACION DE GEOMEMBRANA HDPE, 20 mils (e=0,50 mm)</td>
<td>M2</td>
<td>105.0 0,00</td>
</tr>
<tr>
<td>5.2</td>
<td>MURO DE CONTENCION EN CONCRETO REFORZADO 1.413.672.794</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2,1</td>
<td>LOCALIZACION Y REPLANTEO (INCLUYE TOPOGRAFÍA Y ENTREGA DE PLANOS RECORD) PARA MURO DE CONTENCION EN CONCRETO REFORZADO</td>
<td>M2</td>
<td>1.152 1,00</td>
</tr>
<tr>
<td>5.2,2</td>
<td>MOVIMIENTO DE TIERRA CON EQUIPO MECANICO</td>
<td>M3</td>
<td>424,4 4,5</td>
</tr>
<tr>
<td>5.2,3</td>
<td>CONSTRUCCION DE CAISSON Ø EXT 1,50 M</td>
<td>ML</td>
<td>160,0 0,0</td>
</tr>
<tr>
<td>5.2,4</td>
<td>VIGA DE AMARRE CAISSONS-ESTRUCTURA (INCLUYE SUMINISTRO,FORMALETA,VACIADO Y CURADO)</td>
<td>M3</td>
<td>69,12 0,00</td>
</tr>
<tr>
<td>5.2,5</td>
<td>CONCRETO 4000 PSI MURO DE CONTENCION (INCLUYE SUMINISTRO,FORMALETA,VACIADO Y CURADO)</td>
<td>M3</td>
<td>165,0 1,00</td>
</tr>
<tr>
<td>5.2,6</td>
<td>PERFORACION Y COLOCACION DE ANCLAJES</td>
<td>ML</td>
<td>1.056 0,00</td>
</tr>
<tr>
<td>5.2,7</td>
<td>ACERO DE REFUERZO</td>
<td>KG</td>
<td>76,55 0,00</td>
</tr>
<tr>
<td>5.2,8</td>
<td>FILTRO EN GEO DREN PLANAR</td>
<td>ML</td>
<td>60,00 0,00</td>
</tr>
<tr>
<td>5.2,9</td>
<td>CUNETA EN CONCRETO 3000 PSI</td>
<td>ML</td>
<td>70,00 0,00</td>
</tr>
<tr>
<td>5.2,10</td>
<td>CONSTRUCCION DE GAVIONES (INCLUYE GEOTEXTIL)</td>
<td>M3</td>
<td>270,0 0,0</td>
</tr>
<tr>
<td>5.2,11</td>
<td>COLCHON DRENTAE E=0,50 M</td>
<td>M2</td>
<td>500,0 1,00</td>
</tr>
<tr>
<td>5.2,12</td>
<td>RELLENO REFORZADO H=4,0 m</td>
<td>M3</td>
<td>4.020 0,60</td>
</tr>
<tr>
<td>5.3</td>
<td>ADECUACION PASO PEATONAL CABECERA SUR 243.496.871</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3,1</td>
<td>LOCALIZACION Y REPLANTEO (INCLUYE TOPOGRAFÍA Y ENTREGA DE PLANOS RECORD) PARA PASO PEATONAL</td>
<td>M2</td>
<td>405,0 0,00</td>
</tr>
<tr>
<td>5.3,2</td>
<td>DESMONTE CERRAMIENTO EXISTENTE (INCLUYE DESMONTE, CORTE, TRASLADO, DEMOLICION DE CONCRETOS RETIRO DE SOBRANTES DE ACUERDO A INSTRUCCIONES DEL SUPERVISOR)</td>
<td>GL</td>
<td>1,00 0,00</td>
</tr>
</tbody>
</table>
5.3.3 MOVIMIENTO DE TIERRA CON EQUIPO MECANICO

<table>
<thead>
<tr>
<th></th>
<th>M3</th>
<th>36.25</th>
<th>11.249,00</th>
<th>4NORTE,776</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3,4</td>
<td>24.30</td>
<td>30.000,00</td>
<td>729.000</td>
<td></td>
</tr>
</tbody>
</table>

5.3.5 VIGA EN CONCRETO CICLOPEO 30*30 CM

<table>
<thead>
<tr>
<th></th>
<th>ML</th>
<th>322.0</th>
<th>149.397,00</th>
<th>48.105.834</th>
</tr>
</thead>
</table>

5.3.6 VIGA EN CONCRETO REFORZADO 30*15 CM

<table>
<thead>
<tr>
<th></th>
<th>ML</th>
<th>270.0</th>
<th>54.847,00</th>
<th>14.808.690</th>
</tr>
</thead>
</table>

5.3.7 SUMINISTRO E INSTALACION BASE GRANULAR SEGUN ESPECIFICACION TECNICA E= 0.10 M

<table>
<thead>
<tr>
<th></th>
<th>M3</th>
<th>158.9</th>
<th>63.294,00</th>
<th>10.057.417</th>
</tr>
</thead>
</table>

5.3.8 PISO EN CONCRETO 3000 PSI E=0.15 M

<table>
<thead>
<tr>
<th></th>
<th>M2</th>
<th>675.0</th>
<th>197.534,00</th>
<th>133.335.450</th>
</tr>
</thead>
</table>

5.3.9 CERRAMIENTO EN MALLA ESLABONADA (SEGUIN PLANOS ANEXOS)

<table>
<thead>
<tr>
<th></th>
<th>M2</th>
<th>675.0</th>
<th>197.534,00</th>
<th>133.335.450</th>
</tr>
</thead>
</table>

6. ADECUACION ÁREAS DE SEGURIDAD EXTREMO DE PISTA CABECERA

<table>
<thead>
<tr>
<th></th>
<th>M2</th>
<th>1.554</th>
<th>2.275,00</th>
<th>3.535.714</th>
</tr>
</thead>
</table>

6.1,1 LOCALIZACION Y REPLANTEO (INCLUYE TOPOGRAFIA Y ENTREGA DE PLANOS RECORD)

<table>
<thead>
<tr>
<th></th>
<th>M2</th>
<th>1.554</th>
<th>2.275,00</th>
<th>3.535.714</th>
</tr>
</thead>
</table>

6.1,2 MOVIMIENTO DE TIERRA CON EQUIPO MECANICO

<table>
<thead>
<tr>
<th></th>
<th>M3</th>
<th>10.64</th>
<th>11.249,00</th>
<th>119.779.352</th>
</tr>
</thead>
</table>

6.1,3 EXCAVACIONES VARIAS SIN CLASIFICAR (INCLUYE RETIRO DE SOBRANTES DE ACUERDO A INSTRUCCIONES DEL SUPERVISOR)

<table>
<thead>
<tr>
<th></th>
<th>M3</th>
<th>282.0</th>
<th>30.000,00</th>
<th>8.460.000</th>
</tr>
</thead>
</table>

6.1,4 EXCAVACION MECANICA PARA ESTRUCTURA DE PAVIMENTO INCLUYE (COMPACTACION DEL TERRENO)

<table>
<thead>
<tr>
<th></th>
<th>M3</th>
<th>963.5</th>
<th>5.778,00</th>
<th>5.567.565</th>
</tr>
</thead>
</table>

6.1,5 SUMINISTRO E INSTALACION SUBBASE GRANULAR SEGUN ESPECIFICACION TECNICA FAA P-154

<table>
<thead>
<tr>
<th></th>
<th>M3</th>
<th>466.2</th>
<th>60.349,00</th>
<th>28.137.601</th>
</tr>
</thead>
</table>

6.1,6 SUMINISTRO E INSTALACION BASE GRANULAR SEGUN ESPECIFICACION TECNICA FAA P-208

<table>
<thead>
<tr>
<th></th>
<th>M3</th>
<th>310.8</th>
<th>63.294,00</th>
<th>19.673.674</th>
</tr>
</thead>
</table>

6.1,7 SUMINISTRO E INSTALACION DE GEOTEXTIL REPAV 400 NT

<table>
<thead>
<tr>
<th></th>
<th>M2</th>
<th>1.554</th>
<th>5.305,00</th>
<th>8.244.819</th>
</tr>
</thead>
</table>

6.1,8 IMPRIMACION NORMA TECNICA FAA - P - 602 (INCLUYE SUMINISTRO, BARRIDO DE SUPERFICIE Y RIEGO)

<table>
<thead>
<tr>
<th></th>
<th>M2</th>
<th>1.554</th>
<th>3.500,00</th>
<th>5.439.560</th>
</tr>
</thead>
</table>

6.1,9 RIEGO DE LIGA NORMA TECNICA FAA-P603

<table>
<thead>
<tr>
<th></th>
<th>M2</th>
<th>1.554</th>
<th>3.500,00</th>
<th>5.439.560</th>
</tr>
</thead>
</table>

6.1,10 CONCRETO ASFALTICO NORMA TECNICA FAA-P401

<table>
<thead>
<tr>
<th></th>
<th>M3</th>
<th>186.5</th>
<th>484.941,00</th>
<th>90.441.497</th>
</tr>
</thead>
</table>

6.2 CONSTRUCCION OBRAS DE ACECUACION EN CONCRETO TERMINAL

<table>
<thead>
<tr>
<th></th>
<th>M3</th>
<th>150.0</th>
<th>659.735,00</th>
<th>98.960.250</th>
</tr>
</thead>
</table>

6.2,1 LOCALIZACION Y REPLANTEO (INCLUYE TOPOGRAFIA Y ENTREGA DE PLANOS RECORD) PARA OBRAS DE ADECUACION

<table>
<thead>
<tr>
<th></th>
<th>M2</th>
<th>2.865</th>
<th>2.275,00</th>
<th>6.518.239</th>
</tr>
</thead>
</table>

6.2,2 DEMOLICION DE PARTES EN CONCRETO HIDRAULICO ESPESOR VARIABLE, INCLUYE CORTE , DEMOLICION Y RETIRO DE SOBRANTES DE ACUERDO A INSTRUCCIONES DEL SUPERVISOR

<table>
<thead>
<tr>
<th></th>
<th>M2</th>
<th>80.00</th>
<th>13.625,00</th>
<th>1.090.000</th>
</tr>
</thead>
</table>

6.2,3 CONCRETO SANEAMIENTO 2000 PSI e= 0,05 m

<table>
<thead>
<tr>
<th></th>
<th>M2</th>
<th>218.0</th>
<th>23.592,00</th>
<th>5.143.056</th>
</tr>
</thead>
</table>

6.2,4 CONCRETO 3000 PSI PARA PLACA CANAL EN ZONA DE SEGURIDAD

<table>
<thead>
<tr>
<th></th>
<th>M2</th>
<th>1.311</th>
<th>177.706,00</th>
<th>232.972.566</th>
</tr>
</thead>
</table>

6.2,5 CONCRETO 3000 PSI PARA ESTRUCTURA (INCLUYE ZAPATAS, COLUMNAS Y VIGAS)

<table>
<thead>
<tr>
<th></th>
<th>M3</th>
<th>150.0</th>
<th>659.735,00</th>
<th>98.960.250</th>
</tr>
</thead>
</table>

6.2,6 ACERO DE REFUERZO

<table>
<thead>
<tr>
<th></th>
<th>KG</th>
<th>48.76</th>
<th>4.061,00</th>
<th>198.014.360</th>
</tr>
</thead>
</table>

6.2,7 RELLENO CON MATERIAL DE EXCAVACION SELECCIONADO (INCLUYE NIVELACION, CONFORMACION Y COMPACTACION)

<table>
<thead>
<tr>
<th></th>
<th>M3</th>
<th>188.5</th>
<th>26.420,00</th>
<th>4.755.600</th>
</tr>
</thead>
</table>
7. ADECUACIÓN ÁREAS DE SEGURIDAD EXTREMO DE PISTA CABECERA 171.385.443

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Importe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.1</td>
<td>LOCALIZACIÓN Y REPLANTEO (INCLUYE TOPOGRAFÍA Y ENTREGA DE PLANOS RECORD) PARA OBRAS DE ADECUACIÓN</td>
<td>M2</td>
<td>1.550,87</td>
<td>2.275,00</td>
</tr>
<tr>
<td>7.1.2</td>
<td>MOVIMIENTO DE TIERRA CON EQUIPO MECÁNICO</td>
<td>M3</td>
<td>961,54</td>
<td>11.249,00</td>
</tr>
<tr>
<td>7.1.3</td>
<td>SUMINISTRO E INSTALACIÓN SUBBASE GRANULAR SEGÚN ESPECIFICACION TECNICA FAA P-154</td>
<td>M3</td>
<td>465,26</td>
<td>60.349,00</td>
</tr>
<tr>
<td>7.1.4</td>
<td>SUMINISTRO E INSTALACION BASE GRANULAR SEGÚN ESPECIFICACION TECNICA FAA P-208</td>
<td>M3</td>
<td>310,17</td>
<td>63.294,00</td>
</tr>
<tr>
<td>7.1.5</td>
<td>SUMINISTRO E INSTALACION DE GEOFLEX REPAV 400 NT</td>
<td>M2</td>
<td>1.550,87</td>
<td>5.305,00</td>
</tr>
<tr>
<td>7.1.6</td>
<td>IMPRIMACIÓN NORMA TECNICA FAA - P - 602 (INCLUYE SUMINISTRO, BARRIDO DE SUPERFICIE Y RIEGO)</td>
<td>M2</td>
<td>1.550,87</td>
<td>3.500,00</td>
</tr>
<tr>
<td>7.1.7</td>
<td>RIEGO DE LIGA NORMA TECNICA FAA-P-603</td>
<td>M2</td>
<td>1.550,87</td>
<td>3.500,00</td>
</tr>
<tr>
<td>7.1.8</td>
<td>CONCRETO ASFÁLTICO NORMA TECNICA FAA- P401</td>
<td>M3</td>
<td>186,17</td>
<td>484.941,00</td>
</tr>
</tbody>
</table>

8. DEMARCACION DE PISTA Y CALLES DE RODAJE 681.975.000

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Importe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>DEMARCACIÓN CON PINTURA DE TRÁFICO NORMA TECNICA FAA-P-620</td>
<td>M2</td>
<td>35,000,00</td>
<td>19.485,00</td>
</tr>
</tbody>
</table>

9. OBRAS DE DRENAJE 4.197.893.554

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Importe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>LOCALIZACIÓN Y REPLANTEO (INCLUYE TOPOGRAFÍA Y ENTREGA DE PLANOS RECORD) PARA OBRAS DE DRENAJE</td>
<td>M2</td>
<td>6.990,55</td>
<td>2.275,00</td>
</tr>
<tr>
<td>9.2</td>
<td>DEMOLICIÓN DE PARTES EN CONCRETO HIDRAULICO ESPESOR VARIABLE, INCLUYE CORTE, DEMOLICIÓN Y RETIRO DE SOBRANTES DE ACUERDO A INSTRUCCIONES DEL SUPERVISOR</td>
<td>M2</td>
<td>2.796,60</td>
<td>13.625,00</td>
</tr>
<tr>
<td>9.3</td>
<td>EXCAVACION MECANICA PARA ESTRUCTURA DE CANAL INCLUYE (COMPACTACION DEL TERRENO)</td>
<td>M3</td>
<td>12.764,44</td>
<td>5.778,00</td>
</tr>
<tr>
<td>9.4</td>
<td>CONCRETO SANEAMIENTO 2000 PSI e= 0,05 m</td>
<td>M2</td>
<td>490,81</td>
<td>23.592,00</td>
</tr>
<tr>
<td>9.5</td>
<td>COLCHON CON BASE GRANULAR e= 0,10 m COMPACTADO MANUALMENTE</td>
<td>M3</td>
<td>981,61</td>
<td>63.294,00</td>
</tr>
<tr>
<td>9.6</td>
<td>CONSTRUCCION CANALES EN CONCRETO DE 3000 PSI (INCLUYE FORMALETA, DILATACIONES, SELLADO DE JUNTAS Y CURADO)</td>
<td>M3</td>
<td>3.612,04</td>
<td>542.797,00</td>
</tr>
<tr>
<td>9.7</td>
<td>ACERO DE REFUERZO</td>
<td>KG</td>
<td>363,480,00</td>
<td>4.061,00</td>
</tr>
<tr>
<td>9.8</td>
<td>SUMINISTRO E INSTALACION DE TUBERIA NOVALOC 36" (INCLUYE COLCHON DE ARENA Y COMPACTACION MECANICA CON MATERIAL DE EXCAVACION)</td>
<td>ML</td>
<td>580,00</td>
<td>659.925,00</td>
</tr>
<tr>
<td>9.9</td>
<td>SUMINISTRO E INSTALACION DE TUBERIA NOVALOC PVC 42" (INCLUYE COLCHON DE ARENA Y COMPACTACION MECANICA CON MATERIAL DE EXCAVACION)</td>
<td>ML</td>
<td>179,00</td>
<td>966.525,00</td>
</tr>
<tr>
<td>9.10</td>
<td>RELLENO CON MATERIAL DE EXCAVACION SELECCIONADO (INCLUYE NIVELACION, CONFORMACION Y COMPACTACION)</td>
<td>M3</td>
<td>150,00</td>
<td>26.420,00</td>
</tr>
</tbody>
</table>

10. OBRAS COMPLEMENTARIAS 1.336.227.788

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Importe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>CONSTRUCCION CALLE DE SALIDA PARA SALIDA DE BOMBERS</td>
<td></td>
<td></td>
<td>273.717.509</td>
</tr>
<tr>
<td>10.1.1</td>
<td>LOCALIZACIÓN Y REPLANTEO (INCLUYE TOPOGRAFÍA Y ENTREGA DE PLANOS RECORD)</td>
<td>M2</td>
<td>3.063,65</td>
<td>139,00</td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Unidad</td>
<td>Cantidad</td>
<td>Precio Unitario</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------</td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>10,1,2</td>
<td>DEMOLICION DE PARTES EN CONCRETO ASFALTICO ESPESOR VARIABLE, INCLUYE CORTE Y RETIRO DE SOBRANTES DE ACUERDO A INSTRUCCIONES DEL SUPERVISOR</td>
<td>M2</td>
<td>100,00</td>
<td>13.625,00</td>
</tr>
<tr>
<td>10,1,3</td>
<td>EXCAVACIONES VARIAS "SIN CLASIFICAR" (INCLUYE RETIRO DE SOBRANTES DE ACUERDO A INSTRUCCIONES DEL SUPERVISOR)</td>
<td>M3</td>
<td>50,00</td>
<td>30.000,00</td>
</tr>
<tr>
<td>10,1,4</td>
<td>EXCAVACION MECANICA PARA ESTRUCTURA DE PAVIMENTO INCLUYE (COMPACTACION DEL TERRENO)</td>
<td>M3</td>
<td>1,531</td>
<td>5.778,00</td>
</tr>
<tr>
<td>10,1,5</td>
<td>SUMINISTRO E INSTALACION SUBBASE GRANULAR SEGUN ESPECIFICACION TECNICA FAA P-154</td>
<td>M3</td>
<td>765,9</td>
<td>60.349,00</td>
</tr>
<tr>
<td>10,1,6</td>
<td>SUMINISTRO E INSTALACION BASE GRANULAR SEGUN ESPECIFICACION TECNICA FAA P-208</td>
<td>M3</td>
<td>459,5</td>
<td>63.294,00</td>
</tr>
<tr>
<td>10,1,7</td>
<td>SUMINISTRO E INSTALACION DE GEOTEXTIL REPAV 400 NT</td>
<td>M3</td>
<td>3.063</td>
<td>5.305,00</td>
</tr>
<tr>
<td>10,1,8</td>
<td>IMPRIMACION NORMA TECNICA FAA - P - 602 (INCLUYE SUMINISTRO, BARRIDO DE SUPERFICIE Y RIEGO)</td>
<td>M2</td>
<td>3.063</td>
<td>3.500,00</td>
</tr>
<tr>
<td>10,1,9</td>
<td>RIEGO DE LIGA NORMA TECNICA FAA-P-603</td>
<td>M2</td>
<td>3.063</td>
<td>3.500,00</td>
</tr>
<tr>
<td>10,1,10</td>
<td>CONCRETO ASFALTICO NORMA TECNICA FAA- P401</td>
<td>M3</td>
<td>306,3</td>
<td>484.941,00</td>
</tr>
<tr>
<td>10,2</td>
<td>DEMOLICION Y CONSTRUCCION CASETA SEGURIDAD , TRASLADO ELEMENTOS EXISTENTES EN LA ZONA DE SEGURIDAD A UN SITIO ASIGNADO POR LA AEROCIVIL (INCLUYE DESMONTE ESTRUCTURAS ACTUALES Y RETIRO DE ESCOMBROS DE ACUERDO AL SUPERVISOR)</td>
<td>UND</td>
<td>6,00</td>
<td>3.620.398,00</td>
</tr>
<tr>
<td>10,3</td>
<td>TRASLADO DE ESTACION METEREOLOGICA A SITIO ASIGNADO POR LA AEROCIVIL (INCLUYE DESMONTE ESTACION ACTUAL)</td>
<td>GL</td>
<td>1,00</td>
<td>1.810.199,00</td>
</tr>
<tr>
<td>10,4</td>
<td>CORTE DE ARBOLES (INCLUYE RETIRO DE MATERIAL VEGETAL Y REPOSICION DE ARBOLES DE ACUERDO A INSTRUCCIONES DEL SUPERVISOR)</td>
<td>UND</td>
<td>15,00</td>
<td>95.860,00</td>
</tr>
<tr>
<td>10,5</td>
<td>TRANSPORTE Y DISPOSICION FINAL DE ESCOMBROS A SITIO AUTORIZADO POR EL SUPERVISOR</td>
<td>M3</td>
<td>4,04</td>
<td>14.800,00</td>
</tr>
</tbody>
</table>

COSTOS OBRA CIVIL

35.936.723.380
11.6	Caja de inspección 150x150cm h:100cm, según plano ACE-01, marco en angulo 2 1/2"x2 1/2"x3/16", 2 tapas medias en plata de 2 1/2"x3/16" manija para maniobra, parrilla en hierro 1/2" . Incluye excavación, perfilada y relleno alrededor.	Und	11,00	1.160.148,00	12.761.628
11.7	Regulador de corriente constante 5kVA, FAA L-829 ferroresonante, 6,6A, 3 etapas de brillo, circuitos de protección y desconexión cut out.	Und	2,00	49.578.800,00	99.157.600
11.8	Ducto pvc 2" subterráneo, incluye cinta de señalización y cama de arena, no incluye excavación ni relleno	m	4.100,00	13.955,00	57.215.500
11.9	Excavación de ancho 60cm x profundo 70cm para alojar ductos pvc 2", incluye perfilada y relleno con material seleccionado de la misma excavación, en terreno normal sin conglomerado	m	4.100,00	16.678,00	68.379.800
11.10	Caja de inspección 60x60cm h:80cm, según plano ACE-01, marco en angulo 2 1/2"x2 1/2"x3/16", tapa en plata de 2 1/2"x3/16" manija para maniobra, parrilla en hierro 1/2" . Incluye excavación, perfilada y relleno alrededor.	Und	63,00	359.632,00	22.656.816
11.11	Base profunda FAA L-868B, diámetro 12" profundidad de 60cm, empotrada en pista con tapa hermética como caja de paso	Und	1,00	1.222.085,00	1.222.085
11.12	Curbe de pista en pavimento flexible ancho 1m, profundidad 50cm. Incluye corte y reposición de pavimento y materiales agregados en la zona afectada.	m	348,00	144.114,00	50.151.672
11.13	Corte y reposicion de pavimento flexible en plataforma ancho 30cm, profundidad 40cm, incluye reposición completa y materiales agregados para la zona afectada. (Circuito de rodaje en plataforma)	m	240,00	72.057,00	17.293.680

18. Señalización vertical

18.1	Letrero "A→" Icao Led	Und	1,00	16.026.710,00	16.026.710
18.2	Letrero "A" Icao Led	Und	2,00	16.026.710,00	32.053.420
18.3	Letrero "A 02 20" Icao Led	Und	1,00	23.726.710,00	23.726.710
18.4	Letrero "RAMP↑" Icao Led	Und	2,00	23.726.710,00	47.453.420
18.5	Letrero "A==___" Icao led	Und	1,00	23.726.710,00	23.726.710
18.6	Letrero "___A" Icao led	Und	1,00	23.726.710,00	23.726.710

Total de señalización vertical: 278.273.940
COSTOS OBRAS ELECTRICAS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Tipo</th>
<th>Cantidad</th>
<th>Costo M$</th>
<th>IVA M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letrero “B” icao led</td>
<td>Und</td>
<td>2,00</td>
<td>16.026.710,00</td>
<td>32.053.420</td>
</tr>
<tr>
<td>Letrero “B.” icao led</td>
<td>Und</td>
<td>2,00</td>
<td>16.026.710,00</td>
<td>32.053.420</td>
</tr>
<tr>
<td>Letrero “B” icao led</td>
<td>Und</td>
<td>1,00</td>
<td>23.726.710,00</td>
<td>23.726.710</td>
</tr>
<tr>
<td>Letrero “B 02 20” icao led</td>
<td>Und</td>
<td>1,00</td>
<td>23.726.710,00</td>
<td>23.726.710</td>
</tr>
</tbody>
</table>

20. Subestación y otros

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Tipo</th>
<th>Cantidad</th>
<th>Costo M$</th>
<th>IVA M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPS 100kVA trifasica</td>
<td>Und</td>
<td>1,00</td>
<td>146.361.600,00</td>
<td>146.361.600</td>
</tr>
<tr>
<td>Adecuaciones ductos pvc desde subestación</td>
<td>Gb</td>
<td>1,00</td>
<td>5.050.832,00</td>
<td>5.050.832</td>
</tr>
<tr>
<td>Adecuaciones electricas para subestacion principal</td>
<td>Gb</td>
<td>1,00</td>
<td>13.123.840,00</td>
<td>13.123.840</td>
</tr>
<tr>
<td>Adecuaciones cajas de inspeccion existentes</td>
<td>Gb</td>
<td>1,00</td>
<td>5.013.295,00</td>
<td>5.013.295</td>
</tr>
<tr>
<td>Diseño y tramites ante CENS</td>
<td>Gb</td>
<td>1,00</td>
<td>6.500.000,00</td>
<td>6.500.000</td>
</tr>
<tr>
<td>Certificacion Retie</td>
<td>Gb</td>
<td>1,00</td>
<td>6.500.000,00</td>
<td>6.500.000</td>
</tr>
<tr>
<td>Programa transferencia de tecnologia Ayudas visuales</td>
<td>Gb</td>
<td>1,00</td>
<td>81.500.000,00</td>
<td>81.500.000</td>
</tr>
<tr>
<td>Programa transferencia de tecnologia UPS</td>
<td>Gb</td>
<td>1,00</td>
<td>12.500.000,00</td>
<td>12.500.000</td>
</tr>
</tbody>
</table>

COSTO TOTAL

<table>
<thead>
<tr>
<th>Costo Obras Electricas</th>
<th>M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>554.823.587</td>
<td>NORTE</td>
</tr>
</tbody>
</table>

El presupuesto para el proyecto es de **Cuarenta y seis mil ciento sesenta y nueve millones ciento cinco mil ciento veintiún pesos** ($46.169.105.121) Incluido.

ADMINISTRACION, IMPREVISTO Y UTILIDAD tratándose de una obra pública.

De esta manera contribuimos a mejorar los niveles de calidad y servicio en pro del desarrollo municipal y departamental, brindándole productividad y competitividad, adicional estandarizando e implementado estándares de seguridad operacional de las
áreas de movimiento y las zonas de seguridad del aeropuerto De Medina en Cundinamarca, mediante la construcción de obras necesarias para el movimiento de aeronaves de una forma segura y cómoda, obras necesarias para la normalización del aeródromo de acuerdo con la categoría y las claves de referencia en su pista, con miras a obtener la certificación para dicho aeropuerto en una fase inicial de plan de desarrollo, conforme requisitos técnicos establecidos en la parte decimocuarta de los Reglamentos Aeronáuticos de Colombia y en concordancia con el reglamento aeronáutico Latinoamericano (LAR) y la Organización de Aviación Civil Internacional, OACI.

5. **ANÁLISIS DE RESULTADOS E IMPACTOS**

5.1 **Cómo se responde a la pregunta de investigación con los resultados**

¿Cómo mejorar la pista de aterrizaje, y los servicios que se prestaban en el terminal aéreo de Medina para que pueda volver a operar?

Se debe realizar una inversión a través del Gobierno Nacional o de la Gobernación de Cundinamarca para la construcción y ampliación del aeropuerto, teniendo en cuenta el crecimiento del transporte aéreo en los próximos años.

Así mismo se debe tener en cuenta análisis cualitativo y cuantitativo que deja el presente plan de mejora del aeropuerto, insumo necesario para determinar su viabilidad.

5.2 **Aporte de los resultados a la Gerencia de Obras**

Se realizó un cálculo del presupuesto para la construcción de las obras del aeropuerto de Medina en Cundinamarca teniendo en cuenta Los presupuestos son una excelente
herramienta que facilita la gerencia por objetivos, estableciéndole a la gerencia metas a lograr, expresados en términos monetarios tales como valor económico agregado, tasa de rendimiento sobre inversión, tasa de rendimiento sobre capital, nivel de endeudamiento, determinada posición de liquidez, etc.

5.3 Estrategias de Comunicación y Divulgación

La Comunicación y divulgación del proyecto debe seguir un proceso ordenado en sus contenidos, tiempos y formas; así como utilizar diferentes medios de información para asegurar que los mensajes clave sobre el proyecto lleguen de forma gradual a los diferentes actores.

De acuerdo a lo anterior la universidad católica de Colombia cuenta con una estrategia de comunicación y divulgación entre las cuales están:

- La creación de un artículo, en este está descrito de forma puntual los diferentes métodos como los son la creación del artículo.

- La publicación en la base de datos de la biblioteca de la universidad.

Se demuestra que la estrategia analizada permite difundir ampliamente un mismo resultado u oferta tecnológica, con los contenidos muy adaptados a los intereses de los receptores, en un corto periodo de tiempo, obteniéndose un aumento notable del impacto de la información sobre el público objetivo.

6. CONCLUSIONES

El aeropuerto de Medina en Cundinamarca es uno de los 25 aeropuertos cerrados recientemente por la Aerocivil debido a que no cumplía con las normas mínimas que
exige la afición en Colombia, acerca de esta problemática el presente trabajo de grado arrojo las siguientes conclusiones:

1. Durante la inspección visual técnica se identificó un deterioro severo del pavimento y las fallas encontradas comprometen la estabilidad y la calidad del aeropuerto y por ende la capacidad de servicio de la estructura (vida útil) ha culminado y se confirma con el cierre de la Aeronáutica Civil en el año 2017.

2. Se realizó un estudio socioeconómico en el que se determinó que provincia con menor desarrollo económico y la que menor aporta al PIB en comparación con las 15 existentes en el departamento de Cundinamarca, es Medina.

3. Se realizó un plan de mejora del aeropuerto en el cual se incluyó un diseño básico de la pista teniendo en cuenta las normas vigentes para la aviación en Colombia incluyendo terminal aéreo y zona de Bomberos.

4. Se realizó el cálculo del presupuesto para la construcción del aeropuerto arrojando como resultado un valor de Cuarenta y seis mil ciento sesenta y nueve millones ciento cinco mil ciento veintiún pesos ($ 46.169.105.121) Incluido.

5. De acuerdo a los resultados obtenidos en el presente trabajo es viable la construcción del aeropuerto teniendo en cuenta que en Medina llegaron a un consenso al establecer que el proyecto más estratégico a desarrollarse en la Provincia es la construcción de una Planta agroindustrial para el acopio y procesamiento de frutas, café y cacao, Por lo tanto es necesario que se cree un sistema de transporte eficiente que contribuya como herramienta para la distribución y comercialización de los productos, como lo es el Aeropuerto.
7. NUEVAS ÁREAS DE ESTUDIO

Esta investigación se enfocó al área de la Ingeniería civil, ya que emplea conocimientos de cálculo, mecánica, física hidráulica entre otras; así mismo otras áreas podrían contribuir y/o aportar al presente trabajo como lo son:

- Ingeniería Ambiental.
- Geología.
- Topografía.
- Derecho.
- Arquitectura.

Todas estas otras áreas de estudio son las que giran en torno a las obras a los estudios y diseños que generan la ingeniería civil por lo que su conocimiento es elemento esencial para su desarrollo.
8. BIBLIOGRAFÍA

