Full metadata record
DC FieldValueLanguage
dc.contributor.authorHerrera, María Laura-
dc.contributor.authorGuisselle Rubio, Natalia-
dc.contributor.authorQuintanilla, Juan Pablo-
dc.contributor.authorHuerta, Víctor Manuel-
dc.contributor.authorOsorio Forero, Alejandro-
dc.contributor.authorCárdenas Molano, Melissa Andre-
dc.contributor.authorCorredor Páez, Karen-
dc.contributor.authorValderrama, Mario-
dc.contributor.authorCárdenas, Fernando-
dc.rightsCopyright Universidad Católica de Colombia 2018spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.description.abstractA pesar del amplio uso de la estimulación cerebral profunda para controlar patologías neurológicas y neuropsiquiátricas, su mecanismo de acción aún no es claramente conocido, y existen pocos estudios sistemáticos que relacionen la variación de parámetros de estimulación eléctrica (frecuencia, intensidad, duración del pulso) y la ejecución comportamental. La habénula es una estructura reguladora de respuestas emocionales diana en tratamientos para dolor crónico y depresión, pero la relación entre su estimulación crónica y el desempeño animal en pruebas conductuales no se ha establecido con claridad. Con el objetivo de evaluar el efecto emocional de la estimulación habenular crónica, en este estudio se utilizaron ratas Wistar que recibieron estimulación habenular a intensidad baja (10-80 pA) o alta (120-260 pA) y frecuencia baja (80-150 Hz) o alta (240380 Hz): BIBF-AIBF-BIAF-AIAF, durante 15 minutos a lo largo de tres días consecutivos. Al cuarto día, se hizo la evaluación en un laberinto elevado en cruz y en campo abierto. Los resultados indican un efecto de tipo ansiolítico en el tratamiento BIAF, en comparación con BIBF y AIBF (aumento del número de entradas, porcentaje de tiempo en brazos abiertos y de la distancia recorrida en ellos), efecto que no se explica por cambios en la locomotricidad (distancia recorrida en los brazos cerrados y la exploración en el campo abierto). Se concluye que el parámetro frecuencia posee mayor impacto sobre el efecto comportamental que la intensidad -lo que puede explicar algunos hallazgos paradójicos previos-, que los parámetros utilizados no poseen efecto ansiogénico, y que los efectos potencialmente ansiogénicos de la estimulación a baja frecuencia y el papel de los sistemas dopaminérgicos y serotoninérgicos encontrados deben ser estudiados en futuras investigaciones.spa
dc.publisherUniversidad Católica de Colombia. Facultad de Psicologíaspa
dc.date.accessioned2018-11-19T15:43:58Z-
dc.date.available2018-11-19T15:43:58Z-
dc.date.issued2018-07-
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationHerrera, M., Rubio, N., Quintanilla, J., Huerta, V., Osorio-Forero, A., Cárdenas Molano, M., Corredor Páez, K., Valderrama, M., & Cárdenas, F. (2018). Efectos de la estimulación eléctrica habenular en la modulación de respuestas emocionales en ratas Wistar. Acta Colombiana de Psicología, 21(2), 212-235. Recuperado de https://editorial.ucatolica.edu.co/ojsucatolica/revistas_ucatolica/index.php/acta-colombiana-psicologia/article/view/1455spa
dc.identifier.issn0123-9155-
dc.identifier.urihttps://hdl.handle.net/10983/22342-
dc.language.isospaspa
dc.relation.ispartofActa Colombiana de Psicología, Vol. 21 no. 2 (jul.-dic. 2018); p. 212-235-
dc.typeArtículo de revistaspa
dc.titleEfectos de la estimulación eléctrica habenular en la modulación de respuestas emocionales en ratas Wistarspa
dc.title.alternativeEffects of electrical stimulation of the habenula on the modulation of emotional responses in Wistar ratsspa
dc.title.alternativeEfeitos da estimulação elétrica habenular na modulação de respostas emocionais em ratos Wistarspa
dc.description.abstractenglishDeep brain stimulation is a widely-used approach to the treatment of neurologic and neuropsychiatric diseases. However, its mechanisms remain unclear. There are few systematic studies relating variations on electrical stimulation parameters (frequency, intensity, pulse duration) and behavioral outcome. The habenula relates to emotional behavior and is a main target for chronic pain and depression stimulation treatment. The relation between habenular electrical stimulation and performance in behavioral tests has not been clearly defined. In order to assess the emotional effects of chronic habenular electrical stimulation, Wistar male rats were unilaterally implanted with electrodes aimed to the lateral habenula and assigned to low (10-80 pA) or high (120-260 pA) intensity and low (80-150 Hz) or high (240-380 Hz) frequency conditions: BIBF-AIBF-BIAF-AIAF. They received electrical stimulation 15 minutes/day for three consecutive days and on the fourth day were tested in the elevated plus maze and the open field. The results of these study show that BIAF stimulation has a possible anxiolytic-like effect when compared to BIBF and AIBF (increase in the percentage of open-arms time, entries into the open-arms and total-distance-run in the open-arms). This is not due to any changes in locomotion (total-distance-run and open field exploration). It is concluded that frequency is more important than intensity for behavioral modification. This could explain some previous inconsistent results. The data also suggest that these parameters of stimulation have no anxiogenic effects. The role for dopaminergic and serotonergic systems must be subsequently evaluated as well as potential anxiogenic-like effects of low frequency stimulation.spa
dc.description.abstractportuguesApesar do amplo uso da estimulação cerebral profunda para controlar patologias neurológicas e neuropsiquiátricas, seu mecanismo de ação ainda não é claramente conhecido e existem poucos estudos sistemáticos que relacionem a variação de parâmetros de estimulação elétrica (frequência, intensidade, duração do pulso) e a execução comportamental. A habênula é uma estrutura reguladora de respostas emocionais específicas em tratamentos para dor crònica e depressão, mas a relação entre sua estimulação crònica e o desempenho animal em testes comportamentais não foi claramente estabelecida. Com o objetivo de avaliar o efeito emocional da estimulação habenular crònica, neste estudo foram utilizados ratos Wistar que receberam estimulação habenular de intensidade baixa (10-80 pA) ou alta (120-260 pA) e frequência baixa (80-150 Hz) ou alta (240-380 Hz): BIBF-AIBF-BIAF-AIAF, durante 15 minutos ao longo de três dias consecutivos. No quarto dia, foi feita a avaliação em um labirinto em cruz elevado e em campo aberto. Os resultados indicam um efeito de tipo ansiolítico no tratamento BIAF, em comparação com BIBF e AIBF (aumento do número de entradas, porcentagem de tempo em braços abertos e da distância percorrida neles), efeito que não se explica por mudanças na locomotividade (distância percorrida nos braços fechados e a exploração no campo aberto). Conclui-se que o parâmetro "frequência" tem mais impacto sobre o efeito comportamental do que a "intensidade" - o que pode explicar algumas descobertas paradoxais prévias -, que os parâmetros utilizados não tenham efeito ansiogênico, e que os efeitos potencialmente ansiogênicos da estimulação de baixa frequência e o papel dos sistemas dopaminérgicos e serotoninérgicos encontrados devem ser estudados em pesquisas futuras.spa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadasspa
dcterms.bibliographicCitationAccolla, E. A., Aust, S., Merkl, A., Schneider, G. H., Kuhn, A. A., Draganski, B. (2016). Deep brain stimulation of the posterior gyrus rectus region for treatment resistant depression. Journal of Affective Disorders, 194, 33-37. Doi: https://doi:10.1016/j.jad.2016.01.022spa
dcterms.bibliographicCitationAgarwal, P., Sarris, C. E., Herschman, Y., Agarwal, N., & Mammis, A. (2016). Schizophrenia and neurosurgery: A dark past with hope of a brighter future. Journal of Clinical Neuroscience, 34, 53-58. Doi: https://doi:10.1016/j.jocn.2016.08.009spa
dcterms.bibliographicCitationAlmeida, L., Martinez-Ramirez, D., Ahmed, B., Deeb, W., Jesus, S., & Okun, M. S. (2017). A pilot trial of square biphasic pulse deep brain stimulation for dystonia: The BIP dystonia study. Movement Disorders Journal, 32, 615-618. Doi: https://doi:10.1002/mds.26906spa
dcterms.bibliographicCitationAmat, J., Sparks, P. D., Matus-Amat, P., Griggs, J., Watkins, L. R., & Maier, S. F. (2001). The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Research Bulletin, 917, 118-126. Doi: https://doi.org/10.1016/S0006-8993(01)02934-1spa
dcterms.bibliographicCitationAndersen, S. L., & Teicher, M. H. (1999). Serotonin laterality in amygdala predicts performance in the elevated plus maze in rats. Neuroreport Journal, 10, 3497-3500.spa
dcterms.bibliographicCitationArocho-Quinones, E. V., Hammer, M. J., Bock, J. M., & Pahapill, P. A. (2017). Effects of deep brain stimulation on vocal fold immobility in Parkinson's disease. Surgical Neurology International, 8, 22. Doi: https://doi:10.4103/2152-7806.200580.espa
dcterms.bibliographicCitationBakay, R. A. (2009). Deep brain stimulation for schizophrenia. Stereotactic and functional neurosurgery, 87, 266. Doi: https://doi.org/10.1159/000225980spa
dcterms.bibliographicCitationBaker, P. M., Jhou, T., Li, B., Matsumoto, M., Mizumori, S. J., ... Vicentic, A. (2016). The Lateral Habenula Circuitry: Reward Processing and Cognitive Control. Journal of Neuroscience, 36, 11482-11488. Doi: https://doi.org/10.1523/JNEUROSCI.2350-16.2016spa
dcterms.bibliographicCitationBaker, P. M., Oh, S. E., Kidder, K. S., & Mizumori, S. J. (2015). Ongoing behavioral state information signaled in the lateral habenula guides choice flexibility in freely moving rats. Frontiers in Behavioral Neuroscience, 9, 295. Doi: https://doi:10.3389/fnbeh.2015.00295spa
dcterms.bibliographicCitationBaker, P. M., Raynor, S. A., Francis, N. T., & Mizumori, S. J. (2017). Lateral habenula integration of proactive and retroactive information mediates behavioral flexibility. Neuroscience, 345, 89-98. Doi: https://doi:10.1016/j.neuroscien-ce.2016.02.010spa
dcterms.bibliographicCitationBaldwin, P. R., Alanis, R., & Salas, R. (2011). The Role of the Habenula in Nicotine Addiction. Journal of Addiction Research & Therapy, SI. Doi:https://doi:10.4172/2155-6105.S1-002spa
dcterms.bibliographicCitationBergfeld, I. O., Mantione, M., Hoogendoorn, M. L., Ruhe, H. G., Notten, P., ... Denys, D. (2016). Deep Brain Stimulation of the Ventral Anterior Limb of the Internal Capsule for Treatment-Resistant Depression: A Randomized Clinical Trial. JAMA Psychiatry, 73, 456-464. Doi: https://doi:10.1017/S0033291717000113spa
dcterms.bibliographicCitationBewernick, B. H., Hurlemann, R., Matusch, A., Kayser, S., Grubert, C., . Schlaepfer, T (2010). Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biological Psychiatry, 67, 110-116. Doi: https://doi:10.1016/j.bio-psych.2009.09.013spa
dcterms.bibliographicCitationBewernick, B. H., Kayser, S., Gippert, S. M., Switala, C., Coenen, V. A., & Schlaepfer, T. E. (2017). Deep brain stimulation to the medial forebrain bundle for depression-long-term outcomes and a novel data analysis strategy. Brain Stimulation, 10, 664-671. Doi:https://doi:10.1016/j.brs.2017.01.581spa
dcterms.bibliographicCitationBirchall, E. L., Walker, H. C., Cutter, G., Guthrie, S., Joop, A., ... Amara, A. W (2017). The effect of unilateral subthalamic nucleus deep brain stimulation on depression in Parkinson's disease. Brain Stimulation, 10, 651-656. Doi: https://doi:10.1016/j.brs.2016.12.014spa
dcterms.bibliographicCitationBoadas-Vaello, P., Homs, J., Reina, F., Carrera, A., & Verdu, E. (2017). Neuroplasticity of Supraspinal Structures Associated with Pathological Pain. Anatomical Record, (Hoboken). Doi: https://doi:10.1002/ar.23587spa
dcterms.bibliographicCitationBoccard, S. G., Pereira, E. A., & Aziz, T. Z. (2015). Deep brain stimulation for chronic pain. Journal of Clinical Neuroscience, 22, 1537-1543. Doi: https://doi:10.1016/j.jocn.2015.04.005spa
dcterms.bibliographicCitationBorgonovo, J., Allende-Castro, C., Laliena, A., Guerrero, N., Silva, H., & Concha, M. L. (2017). Changes in neural circuitry associated with depression at pre-clinical, premotor and early motor phases of Parkinson's disease. Parkinsonism and Related Disorders, 35, 17-24. Doi: https://doi:10.1016/j.parkreldis.2016.11.009spa
dcterms.bibliographicCitationBorsook, D., Linnman, C., Faria, V., Strassman, A. M., Becerra, L., & Elman, I. (2016). Reward deficiency and anti-reward in pain chronification. Neuroscience & Biobehavioral Reviews, 68, 282-297. Doi: https://doi:10.1016/j.neubio-rev.2016.05.033spa
dcterms.bibliographicCitationBromberg-Martin, E. S., & Hikosaka, O. (2011). Lateral habenula neurons signal errors in the prediction of reward information. Nature Neuroscience, 14, 1209-1216. Doi: https://doi:10.1038/nn.2902spa
dcterms.bibliographicCitationCastelli, L., Perozzo, P., Zibetti, M., Crivelli, B., Morabito, U., Lanotte, M., ... Lopiano, L. (2006). Chronic deep brain stimulation of the subthalamic nucleus for Parkinson's disease: effects on cognition, mood, anxiety and personality traits. European Neurology, 55, 136-144. doi.org/10.1159/000093213spa
dcterms.bibliographicCitationChan, J., Guan, X., Ni, Y., Luo, L., Yang, L., Zhang, P., ... Chen, Y. (2017). Dopamine D1-like receptor in lateral habenula nucleus affects contextual fear memory and long-term potentiation in hippocampal CA1 in rats. Behavioral Brain Research, 321, 61-68. Doi: https://doi:10.1016/j.bbr.2016.12.026spa
dcterms.bibliographicCitationChang, C., Li, N., Wu, Y., Geng, N., Ge, S., . Wang, J. (2012). Associations between bilateral subthalamic nucleus deep brain stimulation (STN-DBS) and anxiety in Parkinson's disease patients: a controlled study. Journal of Neuropsychiatry & Clinical Neurosciences, 24, 316-325. Doi: https://doi:10.1176/appi.neuropsych.11070170spa
dcterms.bibliographicCitationChoudhury, T. K., Davidson, J. E., Viswanathan, A., & Strutt, A. M. (2017). Deep brain stimulation of the anterior limb of the internal capsule for treatment of therapy-refractory obsessive compulsive disorder (OCD): a case study highlighting neurocognitive and psychiatric changes. Neurocase, 1-8. Doi:https://doi:10.1080/13554794.2017.1319958spa
dcterms.bibliographicCitationCif, L., & Coubes, P. (2017). Historical developments in children's deep brain stimulation. European Journal of Paediatric Neurology, 21, 109-117. Doi: https://doi:10.1016/j.ejpn.2016.08.010spa
dcterms.bibliographicCitationClark, C. R., Galletly, C. A., Ash, D. J., Moores, K. A., Penrose, R. A., & McFarlane, A. C. (2009). Evidence-based medicine evaluation of electrophysiological studies of the anxiety disorders. Clinical EEG and Neuroscience, 40, 84-112. Doi: https://doi/pdf/10.1177/155005940904000208spa
dcterms.bibliographicCitationCoenen, V. A., Schlaepfer, T. E., Goll, P., Reinacher, P. C., Voderholzer, U., Tebartz van, E. L., ... Freyer, T. (2016). The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder. CNS Spectrums,1-8. Doi: https://doi:10.1017/S1092852916000286spa
dcterms.bibliographicCitationCruccu, G., Garcia-Larrea, L., Hansson, P., Keindl, M., Lefaucheur, J. P., ... Paulus, W (2016). EAN guidelines on central neurostimulation therapy in chronic pain conditions. European Journal of Neurology, 23, 1489-1499. Doi: https://doi:10.1111/ene.13103spa
dcterms.bibliographicCitationCukiert, A., & Lehtimaki, K. (2017). Deep brain stimulation targeting in refractory epilepsy. Epilepsia, 58, Supplement 1, 80-84. Doi: https://doi:10.1111/epi.13686spa
dcterms.bibliographicCitationDalkilic, E. B. (2017). Neurostimulation Devices Used in Treatment of Epilepsy. Current Treatment. Options in Neurology, 19, 7.spa
dcterms.bibliographicCitationDell'Osso, B., Cremaschi, L., Oldani, L., & Carlo, A. A. (2017). New Directions in the Use of Brain Stimulation Interventions in Patients with Obsessive-Compulsive Disorder. Current Medicinal Chemistry. Doi: https://doi:10.2174/0929867324666170505113631spa
dcterms.bibliographicCitationDos Santos, L., De Andrade, T. G., & Graeff, F. G. (2010). Social separation and diazepam withdrawal increase anxiety in the elevated plus-maze and serotonin turnover in the median raphe and hippocampus. Journal of Psychopharmacology, 24, 725-731. Doi: https://doi:10.1177/0269881109106954spa
dcterms.bibliographicCitationDupre, D. A., Tomycz, N., Oh, M. Y., & Whiting, D. (2015). Deep brain stimulation for obesity: past, present, and future targets. Neurosurgical Focus, 38, E7. Doi: https://doi:10.3171/2015.3.FOCUS1542spa
dcterms.bibliographicCitationFaria, M. A. (2013). Violence, mental illness, and the brain - A brief history of psychosurgery: Part 3 - From deep brain stimulation to amygdalotomy for violent behavior, seizures, and pathological aggression in humans. Surgical Neurology International, 4, 91. Doi: https://doi:10.4103/2152-7806.115162spa
dcterms.bibliographicCitationFaria, R., Magalhaes, A., Monteiro, P. R., Gomes-Da-Silva, J., Amelia, T. M., & Summavielle, T. (2006). MDMA in adolescent male rats: decreased serotonin in the amygdala and behavioral effects in the elevated plus-maze test. Annals of the New York Academy of Science, 1074, 643-649. Doi: http://doi.org/10.1196/annals.1369.062spa
dcterms.bibliographicCitationFukaya, C., Watanabe, M., Kobayashi, K., Oshima, H., Yoshino, A., & Yamamoto, T. (2017). Predictive Factors for Long-term Outcome of Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease. Neurologia medico-chirurgica (Tokyo), 57, 166-171. Doi: https://doi:10.2176/nmc.oa.2016-0114spa
dcterms.bibliographicCitationGill, M. J., Ghee, S. M., Harper, S. M., & See, R. E. (2013). Inactivation of the lateral habenula reduces anxiogenic behavior and cocaine seeking under conditions of heightened stress. Pharmacology, Biochemistry and Behavior, 111, 24-29. Doi: https://doi:10.1016/j.pbb.2013.08.002spa
dcterms.bibliographicCitationGolden, S. A., Heshmati, M., Flanigan, M., Christoffel, D. J., Guise, K., ... Pfau, M. L. (2016). Basal forebrain projections to the lateral habenula modulate aggression reward. Nature, 534, 688-692. Doi: https://doi:10.1038/nature18601spa
dcterms.bibliographicCitationHan, B., Jin, H. J., Song, M. Y., Wang, T., & Zhao, H. (2014). A potential target for the treatment of Parkinson's disease: effect of lateral habenula lesions. Parkinsonism and Related Disorders, 20, 1191-1195. Doi:https://doi:10.1016/j.parkreldis.2014.08.022spa
dcterms.bibliographicCitationHarat, M., Rudas, M., Zielinski, P., Birska, J., & Sokal, P. (2015). Deep Brain Stimulation in Pathological Aggression. Stereotactic and Functional Neurosurgery, 93, 310-315. Doi: https://doi:10.1159/000431373spa
dcterms.bibliographicCitationHeldt, S. A., & Ressler, K. J. (2006). Lesions of the habenula produce stress- and dopamine-dependent alterations in prepulse inhibition and locomotion. Brain Research, 1073-1074, 229-239. Doi: http://doi.org/10.1016/j.brainres.2005.12.053spa
dcterms.bibliographicCitationHennigan, K., D'Ardenne, K., & McClure, S. M. (2015). Distinct midbrain and habenula pathways are involved in processing aversive events in humans. Journal of Neurosciences, 35, 198-208. Doi: https://doi:10.1523/JNEURO-SCI.0927-14.2015spa
dcterms.bibliographicCitationHikosaka, O., Sesack, S. R., Lecourtier, L., & Shepard, P. D. (2008). Habenula: crossroad between the basal ganglia and the limbic system. Journal of Neurosciences, 28, 11825-11829. Doi: https://doi:10.1523/JNEURO-SCI.3463-08.2008spa
dcterms.bibliographicCitationHong, S., & Hikosaka, O. (2008). The globus pallidus sends reward-related signals to the lateral habenula. Neuron, 60, 720-729. Doi: https://doi:10.1016/j.neuron.2008.09.035spa
dcterms.bibliographicCitationHowland, R. H. (2013). Deep brain stimulation and aggression. Journal of Neurosurgery, 119, 273-275. Doi: https://doi:10.3171/2013.1.JNS122308spa
dcterms.bibliographicCitationJean-Richard Dit, B. P., & McNally, G. P. (2014). The role of the lateral habenula in punishment. PLOSONE, 9, e111699. Doi: https://doi:10.1371/journal.pone.0111699spa
dcterms.bibliographicCitationJohn, C. S., & Currie, P. J. (2012). N-arachidonoyl-serotonin in the basolateral amygdala increases anxiolytic behavior in the elevated plus maze. Behavioral Brain Research, 233, 382-388. Doi: https://doi:10.1016/j.bbr.2012.05.025spa
dcterms.bibliographicCitationKim, J. H., Chang, W. S., Jung, H. H., & Chang, J. W. (2015). Effect of Subthalamic Deep Brain Stimulation on Levodo-pa-Induced Dyskinesia in Parkinson's Disease. Yonsei Medical Journal, 56, 1316-1321. Doi:https://doi:10.3349/ymj.2015.56.5.1316spa
dcterms.bibliographicCitationKim, Y., Morath, B., Hu, C., Byrne, L. K., Sutor, S. L., Frye, M. A., ... Tye, S. J. (2016). Antidepressant actions of lateral habenula deep brain stimulation differentially correlate with CaMKII/GSK3/AMPK signaling locally and in the infralimbic cortex. Behavioral Brain Research, 306, 170-177. Doi: https://doi:10.1016/j.bbr.2016.02.039spa
dcterms.bibliographicCitationKlinger, N. V., & Mittal, S. (2016). Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy. Clinical Neurology and Neurosurgery, 140, 11-25. Doi: https://doi:10.1016/j.clineuro.2015.11.009spa
dcterms.bibliographicCitationKrishna, V., Sammartino, F., King, N. K., So, R. Q., & Wennberg, R. (2016). Neuromodulation for Epilepsy. Neurosurgery Clinics of North America, 27, 123-131. Doi: https://doi:10.1016/j.nec.2015.08.010spa
dcterms.bibliographicCitationLecca, S., Meye, F. J., & Mameli, M. (2014). The lateral habenula in addiction and depression: an anatomical, synaptic and behavioral overview. European Journal of Neuroscience, 39, 1170-1178. Doi:https://doi:10.1111/ejn.12480spa
dcterms.bibliographicCitationLecourtier, L., Deschaux, O., Arnaud, C., Chessel, A., Kelly, P. H., & Garcia, R. (2006). Habenula lesions alter synaptic plasticity within the fimbria-accumbens pathway in the rat. Neuroscience, 141, 1025-1032. Doi: https://doi.org/10.1016/j.neuroscience.2006.04.018spa
dcterms.bibliographicCitationLecourtier, L., Neijt, H. C., & Kelly, P. H. (2004). Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia. European Journal of Neuroscience, 19, 2551-2560. doi.org/10.1111/j.0953-816X.2004.03356.xspa
dcterms.bibliographicCitationLi, J., Zuo, W., Fu, R., Xie, G., Kaur, A., . Ye, J. H. (2016). High Frequency Electrical Stimulation of Lateral Habenula Reduces Voluntary Ethanol Consumption in Rats. International Journal of Neuropsychopharmacology, pyw050. Doi: https://doi:10.1093/ijnp/pyw050spa
dcterms.bibliographicCitationLi, Y., Wang, Y., Xuan, C., Li, Y., Piao, L., ... Zhao, H. (2017). Role of the Lateral Habenula in Pain-Associated Depression. Frontiers in Behaioral Neuroscience, 11, 31. Doi: https://doi:10.3389/fnbeh.2017.00031spa
dcterms.bibliographicCitationLim, L. W, Prickaerts, J., Huguet, G., Kadar, E., Hartung, H., Temel, Y. (2015). Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms. Transational Psychiatry, 5, e535. Doi: https://doi:10.1038/tp.2015.24spa
dcterms.bibliographicCitationLin, D., & Parsons, L. H. (2002). Anxiogenic-like effect of serotonin(1B) receptor stimulation in the rat elevated plusmaze. Pharmacology, Biochemistry and Behavior, 71, 581-587. Doi: https://doi.org/10.1016/S0091-3057(01)00712-2spa
dcterms.bibliographicCitationLumsden, D. E., Kaminska, M., Ashkan, K., Selway, R., & Lin, J. P. (2017). Deep brain stimulation for childhood dystonia: Is 'where' as important as in 'whom'? European Journal of Paediatric Neurology, 21, 176-184. Doi: https://doi:10.1016/j.ejpn.2016.10.002spa
dcterms.bibliographicCitationMaisonnette, S., Morato, S., & Brandao, M. L. (1993). Role of resocialization and of 5-HT1A receptor activation on the anxiogenic effects induced by isolation in the elevated plus-maze test. Physiology and Behavior, 54, 753-758. Doi: https://doi.org/10.1016/0031-9384(93)90087-Vspa
dcterms.bibliographicCitationMargolis, E. B., & Fields, H. L. (2016). Mu Opioid Receptor Actions in the Lateral Habenula. PLOS ONE, 11, e0159097. Doi: https://doi:10.1371/journal.pone.0159097spa
dcterms.bibliographicCitationMoraes, C. L., Bertoglio, L. J., & Carobrez, A. P. (2008). Interplay between glutamate and serotonin within the dorsal periaqueductal gray modulates anxiety-related behavior of rats exposed to the elevated plus-maze. Behavioral Brain Research, 194, 181-186. Doi: https://doi:10.1016/j.bbr.2008.07.005spa
dcterms.bibliographicCitationMoreines, J. L., Owrutsky, Z. L., & Grace, A. A. (2017). Involvement of Infralimbic Prefrontal Cortex but not Lateral Habenula in Dopamine Attenuation After Chronic Mild Stress. Neuropsychopharmacology, 42, 904-913. Doi: https://doi:10.1038/npp.2016.249spa
dcterms.bibliographicCitationMotta, V., Maisonnette, S., Morato, S., Castrechini, P., & Brandao, M. L. (1992). Effects of blockade of 5-HT2 receptors and activation of 5-HT1A receptors on the exploratory activity of rats in the elevated plus-maze. Psychopharmacology (Berl), 107, 135-139.spa
dcterms.bibliographicCitationMulders, A. E. P., Plantinga, B. R., Schruers, K., Duits, A., Janssen, M. L. F., Ackermans, L., ... Temel, Y. (2016). Deep brain stimulation of the subthalamic nucleus in obsessive-compulsive disorder: Neuroanatomical and pathophysiological considerations. European Neuropsychopharmacology, 26, 1909-1919. Doi: https://doi:10.1016/j.euro-neuro.2016.10.011spa
dcterms.bibliographicCitationMurphy, C. A., DiCamillo, A. M., Haun, F., & Murray, M. (1996). Lesion of the habenular efferent pathway produces anxiety and locomotor hyperactivity in rats: a comparison of the effects of neonatal and adult lesions. Behavioral Brain Research, 81, 43-52. Doi: https://doi.org/10.1016/S0166-4328(96)00041-1spa
dcterms.bibliographicCitationMurrow, R. W. (2014). Penfield's Prediction: A Mechanism for Deep Brain Stimulation. Frontiers in Neurology, 5, 213. Doi: https://doi:10.3389/fneur.2014.00213spa
dcterms.bibliographicCitationNicolaidis, S. (2017). Neurosurgery of the future: Deep brain stimulations and manipulations. Metabolism, 69S, S16-S20. Doi: https://doi:10.1016/j.metabol.2017.01.013spa
dcterms.bibliographicCitationOotsuka, Y., & Mohammed, M. (2015). Activation of the habenula complex evokes autonomic physiological responses similar to those associated with emotional stress. PhysiologicalReports, 3. Doi:https://doi:10.14814/phy2.12297spa
dcterms.bibliographicCitationOstrem, J. L., San, L. M., Dodenhoff, K. A., Ziman, N., Markun, L. C., Racine, C. A., ... Starr, P. A. (2017). Subthalamic nucleus deep brain stimulation in isolated dystonia: A 3-year follow-up study. Neurology, 88, 25-35. Doi: https://doi:10.1212/WNL.0000000000003451spa
dcterms.bibliographicCitationPaxinos, G., & Watson, C. (2006). The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier Science.spa
dcterms.bibliographicCitationPlotkin, R. (1982). Results in 60 cases of deep brain stimulation for chronic intractable pain. Applied Neurophysiology, 45, 173-178.spa
dcterms.bibliographicCitationPobbe, R. L., & Zangrossi, H., Jr. (2010). The lateral habenula regulates defensive behaviors through changes in 5-HT-mediated neurotransmission in the dorsal periaqueductal gray matter. Neuroscience Letters, 479, 87-91. Doi: https://doi:10.1016/j.neulet.2010.05.021spa
dcterms.bibliographicCitationRay, C. D., & Burton, C. V. (1980). Deep brain stimulation for severe, chronic pain. Acta Neurochirurgica Supplement (Wien.), 30, 289-293.spa
dcterms.bibliographicCitationRolls, E. T. (2017). The roles of the orbitofrontal cortex via the habenula in non-reward and depression, and in the responses of serotonin and dopamine neurons. Neuroscience & Biobehavioral Reviews, 75, 331-334. Doi: https://doi:10.1016/j.neubiorev.2017.02.013spa
dcterms.bibliographicCitationRosenow, J. M., Mogilnert, A. Y., Ahmed, A., & Rezai, A. R. (2004). Deep brain stimulation for movement disorders. Neurological Research, 26, 9-20. Doi: https://doi:10.1179/016164104773026480spa
dcterms.bibliographicCitationRoth, R. M., Flashman, L. A., Saykin, A. J., & Roberts, D. W. (2001). Deep brain stimulation in neuropsychiatric disorders. Current Psychiatry Reports, 3, 366-372.spa
dcterms.bibliographicCitationSalgado-Lopez, L., Pomarol-Clotet, E., Roldan, A., Rodriguez, R., Molet, J., ... Sarro, S. (2016). Letter to the Editor: Deep brain stimulation for schizophrenia. Journal of Neurosurgery, 125, 229-230. Doi: https://doi:10.3171/2015.12.JNS152874spa
dcterms.bibliographicCitationSchwalb, J. M., & Hamani, C. (2008). The history and future of deep brain stimulation. Neurotherapeutics, 5, 3-13. Doi:https://doi:10.1016/j.nurt.2007.11.003spa
dcterms.bibliographicCitationSetem, J., Pinheiro, A. P., Motta, V. A., Morato, S., & Cruz, A. P. (1999). Ethopharmacological analysis of 5-HT ligands on the rat elevated plus-maze. Pharmacology, Biochemistry and Behavior, 62, 515-521. doi.org/10.1016/S0091-3057(98)00193-2spa
dcterms.bibliographicCitationShelton, L., Becerra, L., & Borsook, D. (2012). Unmasking the mysteries of the habenula in pain and analgesia. Progress in Neurobiology, 96, 208-219. Doi: https://doi:10.1016/j.pneurobio.2012.01.004spa
dcterms.bibliographicCitationSong, M., Jo, Y. S., Lee, Y. K., & Choi, J. S. (2017). Lesions of the lateral habenula facilitate active avoidance learning and threat extinction. Behavioral Brain Research, 318, 12-17. Doi: https://doi:10.1016/j.bbr.2016.10.013spa
dcterms.bibliographicCitationSourani, D., Eitan, R., Gordon, N., & Goelman, G. (2012). The habenula couples the dopaminergic and the serotonergic systems: application to depression in Parkinson's disease. European Journal of Neuroscience, 36, 2822-2829. Doi: https://doi:10.1111/j.1460-9568.2012.08200.xspa
dcterms.bibliographicCitationSturm, V., Lenartz, D., Koulousakis, A., Treuer, H., Herholz, K., Klein, J. C., ... Klosterkõtter, J. (2003). The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. Journal of Chemical. Neuroanatomy, 26, 293-299. doi.org/10.1016/j.jchemneu.2003.09.003spa
dcterms.bibliographicCitationThornton, E. W, & Bradbury, G. E. (1989). Effort and stress influence the effect of lesion of the habenula complex in one-way active avoidance learning. Physiology & Behavior, 45, 929-935. doi.org/10.1016/0031-9384(89)90217-5spa
dcterms.bibliographicCitationToda, H., Saiki, H., Nishida, N., & Iwasaki, K. (2016). Update on Deep Brain Stimulation for Dyskinesia and Dystonia: A Literature Review. Neurologia Medico-Chirurgica (Tokyo), 56, 236-248. Doi: https://doi:10.2176/nmc.ra.2016-0002spa
dcterms.bibliographicCitationUdupa, K., & Chen, R. (2015). The mechanisms of action of deep brain stimulation and ideas for the future development. Progress in Neurobiology, 133, 27-49. Doi: https://doi:10.1016/j.pneurobio.2015.08.001spa
dcterms.bibliographicCitationVadovicova, K. (2014). Affective and cognitive prefrontal cortex projections to the lateral habenula in humans. Frontiers in Human Neuroscience, 8, 819. Doi: https://doi:10.3389/fnhum.2014.00819spa
dcterms.bibliographicCitationVelasquez, K. M., Molfese, D. L., & Salas, R. (2014). The role of the habenula in drug addiction. Frontiers in Human Neurosciences, 8, 174. Doi:https://doi:10.3389/fnhum.2014.00174spa
dcterms.bibliographicCitationWickens, A. P., & Thornton, E. W. (1996). Circling behaviour induced by apomorphine after lesions of the habenula. Experimental Brain Research, 109, 17-21.spa
dcterms.bibliographicCitationYadid, G., Gispan, I., & Lax, E. (2013). Lateral habenula deep brain stimulation for personalized treatment of drug addiction. Frontiers in Human Neuroscience, 7, 806. Doi: https://doi:10.3389/fnhum.2013.00806spa
dcterms.bibliographicCitationYang, L. M., Hu, B., Xia, Y. H., Zhang, B. L., & Zhao, H. (2008). Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behavioral Brain Research, 188, 84-90. Doi: https://doi.org/10.1016Zj.bbr.2007.10.022spa
dcterms.bibliographicCitationYeomans, J. S. (1990). Principles of brain stimulation. New York: Oxford University Press.spa
dcterms.bibliographicCitationZhao, H., Zhang, B. L., Yang, S. J., & Rusak, B. (2015). The role of lateral habenula-dorsal raphe nucleus circuits in higher brain functions and psychiatric illness. Behavioral Brain Research, 277, 89-98. Doi: https://doi:10.1016/j.bbr.2014.09.016spa
dc.type.dcmi-type-vocabularyTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.subject.proposalCOMPORTAMIENTO EMOCIONALspa
dc.subject.proposalESTIMULACIÓN ELÉCTRICA CEREBRAL PROFUNDAspa
dc.subject.proposalHABÉNULAspa
dc.subject.proposalRATASspa
dc.subject.proposalDEEP BRAIN STIMULATIONspa
dc.subject.proposalEMOTIONAL BEHAVIORspa
dc.subject.proposalHABENULAspa
dc.subject.proposalRATSspa
dc.subject.proposalCOMPORTAMENTO EMOCIONALspa
dc.subject.proposalESTIMULAÇÃO ELÉTRICA CEREBRAL PROFUNDAspa
dc.subject.proposalHABÊNULAspa
dc.subject.proposalRATOSspa
Appears in Collections:Acta Colombiana de Psicología

Files in This Item:
File Description SizeFormat 
1455-9552-1-PB.pdfArtículo principal1.16 MBAdobe PDFThumbnail
View/Open
1455-9553-1-PB.pdfArtículo principal1.19 MBAdobe PDFThumbnail
View/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.