Title: Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo
Other Titles: Eco-friendly coverings: Analysis of the use of ventilated facades in hot, humid weather
Ecoenvolventes: análise do uso de fachadas ventiladas em clima quente e úmido
Authors: Luciani Mejía, Sara
Velasco Gómez, Rodrigo
Hudson, Roland
Keywords: ARQUITECTURA BIOCLIMÁTICA
CLIMA
DATOS CLIMÁTICOS
DISEÑO ARQUITECTÓNICO
MODELO DE SIMULACIÓN
TEMPERATURA
BIOCLIMATIC ARCHITECTURE
CLIMATE
CLIMATIC DATA
ARCHITECTURAL DESIGN
SIMULATION MODEL
TEMPERATURE
ARQUITETURA BIOCLIMÁTICA
CLIMA
DADOS CLIMÁTICOS
DESENHO ARQUITETÔNICO
MODELO DE SIMULAÇÃO
TEMPERATURA
Issue Date: Jul-2018
Publisher: Universidad Católica de Colombia. Facultad de Diseño
Citation: Luciani-Mejía, S., Velasco-Gómez, R., & Hudson, R. (2018). Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo. Revista de Arquitectura (Bogotá), 20(2), 62-77. Doi: http://dx.doi.org/10.14718/ RevArq.2018.20.2.1726
Abstract: Con el objetivo de aportar a la reducción de impactos en la construcción de edificaciones fueron diseñados varios sistemas de fachadas ventiladas y convencionales, involucrando fachadas opacas, elementos vegetales y cámaras de aire. Tales sistemas fueron evaluados con simulaciones ambientales y mediciones en prototipo en las diversas etapas de la investigación, lo que permitió la comparación de resultados y la identificación de comportamiento en términos de confort térmico. Los resultados de las simulaciones frente a mediciones vislumbraron dos cuestiones: las discrepancias y similitudes entre los datos de entrada y salida en los dos tipos de proceso mencionados; así como la utilidad de las fachadas ventiladas opacas en clima tropical húmedo como Girardot, lo que sugirió una última etapa de evaluación de estrategias de diseño pasivo en la búsqueda del confort térmico y la sostenibilidad en el proyecto arquitectónico.
Bibliography References: Afonso, C. y Oliveira, A. (2000). Solar chimneys: simulation and experiment. Energy and Buildings (32), 71.79. Doi: https://doi.org/10.1016/ S0378-7788(99)00038-9

Andarini, R. (2014). The role of building thermal simulation for energy efficient building design. Energy Procedia (47), 217-226. Doi: https:// doi.org/10.1016/j.egypro.2014.01.217

Andelkovic, A. S., Mujan, I. y Dakic, S. (2016). Experimental validation of aEnergyPlus model: Application of a multi-storey naturally ventilated double skin façade. Energy and Buildings(118), 27-36. Doi: https://doi. org/10.1016/j.enbuild.2016.02.045

Aparicio-Fernández, C., Vivancos, J.-L., Ferrer- Gisbert, P. y Royo-Pastor, R. (2014). Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering (66), 563-570. Doi: http://dx.doi.org/10.1016/j.applthermaleng. 2014.02.041

Balocco, C. (2002). A simple model to study ventilated facades energy performance. Energy and Buildings (34), 469-475. Doi: https://doi. org/10.1016/S0378-7788(01)00130-X

Barbosa, S. e Ip, K. (2014). Perspectives of double skin façades for naturallyventilated buildings: A review. Renewable and Sustainable Energy Reviews (40), 1019-1029. Doi: https://doi. org/10.1016/j.rser.2014.07.192

Blanco, J. M., Buruaga, A., Rojí, E., Cuadrado, J. y Pelaz, B. (2016). Energy assessment and optimization of perforated metal sheet doubleskin façades through Design Builder. A case study in Spain. Energy and Buildings (111), 326-336. Doi: http://dx.doi.org/10.1016/j. enbuild.2015.11.053

Bolaños, T. y Moscoso, A. (2011). Consideraciones y selección de especies vegetales para su implementación en ecoenvolventes arquitectónicos: una herramienta metodológica. Revista Nodo, 5(10), 5-20. Recuperado de http://csifesvr.uan.edu.co/index.php/nodo/ article/view/138

Ciampi, M., Leccese, F. y Tuoni, G. (2003). Ventilated facades energy performance in summer cooling of buildings. Solar Energy (75), 491-502. Doi: https://doi.org/10.1016/j.solener. 2003.09.010.

Design Builder (19 de octubre de 2017). Design Builder Software Ltd. Recuperado de https:// www.designbuilder.co.uk/

EnergyPlus (19 de octubre de 2017). EneryPlus. Recuperado de https://energyplus.net/

Fantucci, S., Marinosci, C., Serra, V. y Carbonaro, C. (2017). Thermal performance assessment of an opaque ventilated façade in the summer period: calibration of a simulation model through in-field measurements. Energy Procedia (111), 619-628. Doi: https://doi. org/10.1016/j.egypro.2017.03.224

Gagliano, A., Patania, F., Nocera, F. y Signorello, C. (2014). Assessment of the dynamic thermal performance of massive buildings. Energy and Buildings (72), 361-370. Doi: https://doi. org/10.1016/j.enbuild.2013.12.060

Gaillard, L., Giroux-Julien, S., Ménézo, C. y Pabiou, H. (2014). Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions. Solar Energy (103), 223-241. Doi: http://dx.doi. org/10.1016/j.solener.2014.02.018

Ghaffarianhoseini, A., Ghaffarianhoseini, A., Berardi, U., Tookey, J., Hin Wa Li, D. y Kariminia, S. (2016). Exploring the advantages and challenges of double-skin façades (DSFs). Renewable and Sustainable Energy Reviews (60), 1052-1065. Doi: https://doi. org/10.1016/j.rser.2016.01.130

Giancola, E., Sanjuan, C., Blanco, E. y Heras, M. R. (2012). Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings (54), 363-375. Doi: http:// dx.doi.org/10.1016/j.enbuild.2012.07.035

Gratia, E. y De Herde, A. (2004). Optimal operation of a south double-skin facade. Energy and Buildings (36), 41-60. Doi: https://doi. org/10.1016/j.enbuild.2004.05.004

Gratia, E. y De Herde, A. (2007). Guidelines for improving natural daytime ventilation in an office building with a double-skin facade. Solar Energy (81), 435-448. Doi: https://doi. org/10.1016/j.solener.2006.08.006

Haase, M., Silva, F. M. y Amato, A. (2009). Simulation of ventilated facades in hot and humid climates. Energy and Buildings (41), 361-373. Doi: https://doi.org/10.1016/j. enbuild.2008.11.008

Høseggen, R., Wachenfeldt, B. J. y Hanssen, S. O. (2008). Building simulation as an assisting tool in decision making Case study: With or without a double-skin façade? Energy and Buildings (40), 821-827. Doi: https://doi. org/10.1016/j.enbuild.2007.05.015

Jentsch, M. F., Bahaj, A. S. y James, P. A. (2008). Climate change future proofing of buildings— Generation and assessment of building simulation weather files. Energy and Buildings, 40(12). 2148-2168. Doi: https://doi. org/10.1016/j.enbuild.2008.06.005

Kim, D.-W. y Park, C.-S. (2011). Difficulties and limitations in performance simulation of a double skin façade with EnergyPlus. Energy and Buildings (43), 3635-3645. Doi: https:// doi.org/10.1016/j.enbuild.2011.09.038

Marinosci, C., Semprini, G. y Morini, G. (2014). Experimental analysis of the summer thermal performances of a naturally ventilated rainscreen façade building. Energy and Buildings (72), 280-287. Doi: http://dx.doi. org/10.1016/j.enbuild.2013.12.044

Marinosci, C., Strachan, P., Semprini, G. y Morini, G. (2011). Empirical validation and modelling of a naturally ventilated rainscreen façade building. Energy and Buildings (43), 853-863. Doi: https://doi.org/10.1016/j. enbuild.2010.12.005

Mateus, N. M., Pinto, A. y Carrilho da Graça, G. (2014). Validation of EnergyPlus thermal simulation of a double skin naturallyand mechanically ventilated test cell. Energy and Buildings (75), 511-522. Doi: http://dx.doi. org/10.1016/j.enbuild.2014.02.043

Meteonorm (22 de 02 de 2018). Meteonorm. Recuperado de http://www.meteonorm.com/

Peci López, F., Jensen, R., Heiselberg, P. y Ruiz de Adana, M. (2012). Experimental analysis and model validation of an opaque ventilated facade. Building and Environment (56), 265- 275. Doi: https://doi.org/10.1016/j.buildenv. 2012.03.017

Poirazis, H. (2004). Double Skin Façades for Office Buildings. Lund: Division of Energy and Building Design Department of Construction and Architecture Lund Institute of Technology, Division of Energy and Building Design. Recuperado de http://www.ebd.lth.se/fileadmin/energi_ byggnadsdesign/images/Publikationer/Bok- EBD-R3-G5_alt_2_Harris.pdf

Pyrgou, A., Castaldo, V. L., Pisello, A. L., Cotana, F. y Santamouris, M. (2017). Differentiating responses of weather files and local climate change to explain variations in building thermal- energy performance simulations. Solar Energy (153), 224-237. Doi: http://dx.doi. org/10.1016/j.solener.2017.05.040

Rubiano Martín, M. A. (2015). Ventajas del uso de fachada ventilada, en Giradot (Colombia). Revista Nodo, 10(19), 111-120. Recuperado de http://revistas.uan.edu.co/index.php/ nodo/article/view/538

Stec, W. J., Paassen, A. H. y Maziarz, A. (2005). Modelling the double skin façade with plants. Energy and Buildings (37), 419-427. Doi: https:// doi.org/10.1016/j.enbuild.2004.08.008

Theodosiou, T., Tsikaloudaki, K. y Bikas, D. (2017). Analysis of the thermal bridging effect on ventilated facades. Procedia Environmental Sciences (38), 397-404. Doi: https://doi. org/10.1016/j.proenv.2017.03.121

U.S. Department of Energy (22 de 02 de 2018). energy.gov. Recuperado de https://energy.gov/

Varini, C. (2011). Ecoenvolventes R & D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geo-climatic zones with cultivated native woods and plants. SB Helsinki World Sustainable Building Conference. Helsinki: Finnish Association of Civil Engineers RIL and VTT Technical Research Centre of Finland. Recuperdao de http://www.irbnet.de/daten/ iconda/CIB_DC22949.pdf

Varini, C. (2013). Ecoenvelopes R&D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geoclimatic zones. Informes de la Construcción, 65, 23-30. Doi: https://doi. org/10.3989/ic.11.147

Velasco, R. y Robles, D. (2011). Eco-envolventes: A parametric design approach to generate and evaluate façade configurations for hot and humid climates. En T. Zupančič et al. (eds.), eCAADe 2011 Respecting fragile places: Proceedings of the 29th Conference on Education in Computer Aided Architectural Design in Europe (pp. 539-548). Ljubljana: Brussels: Education in Computer Aided Architectural Design in Europe; Ljubljana: Faculty of Architecture.

Velasco, R., Hudson, R. y Luciani, S. (2017). Tools and strategies to improve climate-driven façade design in the tropics: A pilot project for Colombia. 12th Conference on Advanced Building Skins (pp. 995-1003). Bern: Advanced Building Skins GmbH.

Vernay, D. G., Raphael, B. y Smith, I. F. (2014). Augmenting simulations of airflow around buildings using field measurements. Advanced Engineering Informatics (28), 412-424. Doi: http://dx.doi.org/10.1016/j.aei.2014.06.003
URI: https://hdl.handle.net/10983/22925
ISSN: 1657-0308
2357-626X
metadata.dc.relation.ispartof: Revista de arquitectura, Vol. 20, no. 1 (ene. – jun. 2018); p. 62-77.
Appears in Collections:CAH. Revista de Arquitectura

Files in This Item:
File Description SizeFormat 
5. Eco-envolventes Análisis del uso de fachadas ventiladas en clima cálido-húmedo.pdf2.57 MBAdobe PDFThumbnail
View/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.